Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Bild sagt mehr als 1000 (Schicht-)Bilder

07.07.2004


Radiologem müssen bis zu 1500 Schnittbilder sichten, um Gefäßerkrankungen diagnostizieren zu können. Informatiker der Technischen Universität Wien haben Verfahren entwickelt, in der erkrantkte Stellen in Sekundenschnelle sichtbar sind.



Wien (TU) Radiologen nehmen - unter anderem - Blutgefäße unter die Lupe, um festzustellen, ob sie verengt, verkalkt oder verstopft sind. Dazu verwenden sie modernste Computer Tomographen, die in nur 40 - 70 Sekunden bis zu 1500 Schnittbilder erstellen. Um zu erkennen, ob und wo pathologische Veränderungen der Gefäße vorliegen, muss der Radiologe jedes Bild (!) sprichwörtlich unter die Lupe nehmen. Das ist langwierig und meist sehr diffizil. Um den Radiologen ihre medizinische Aufgabe zu erleichtern, haben Informatiker der Technischen Universität Wien Verfahren entwickelt, die in kürzester Zeit einen Überblick über das erkrankte Gefäß bieten.



"Ein Mehr an Information aus den Bildern zu gewinnen, indem man die analysierten Daten visuell aufbereitet", so beschreibt Armin Kanitsar, Informatiker an der Technischen Universität Wien, das Wesen seiner Forschungsarbeit. Durch die verwendeten Darstellungsverfahren werden unerwünschte Verdeckungen mit anderen anatomischen Strukturen, wie beispielsweise den Knochen, verhindert. Ein Längsschnitt durch den Gefäßbaum zeigt das Gefäßlumen, d.h. den Druchmesser, in einem einzelnen Bild. Auf Knopfdruck lässt sich nun in Sekundenschnelle erkennen, wo sich die erkrankte Stelle befindet.

Die Praxisrelevanz der interdisziplinären Arbeit des jungen TU-Forschers wurde von Beginn an durch die intensive Kooperation mit dem medizinischen Projektpartner Prof. Dominik Fleischmann begründet. Die von Armin Kanitsar entwickelte Software ist nun bereits im AKH, an der Universität in Stanford und an weiteren Uni-Kliniken im Einsatz.

Gefäße virtuell aufklappen

Moderne bildgebende Verfahren und effiziente Algorithmen ermöglichen es, anatomische Strukturen virtuell dreidimensional zu rekonstruieren. Abstrakte Informationen, wie die Zentralachse eines Gefäßes, können dadurch berechnet werden. Basierend auf diesem zusätzlichen Wissen werden anwendungs-spezifische Darstellungsverfahren entwickelt.

Durch die Extraktion einer längsverlaufenden Schnittebene entlang der Zentralachse wird der Längsschnitt eines Gefäßes sichtbar. Wichtige Eigenschaften, wie der Durchmesser (das Gefäßlumen) und mögliche Anomalien (z. B. Verkalkungen), werden in dieser Schnittebene sichtbar. Dieses Verfahren wird als Curved Planar Reformation (CPR) bezeichnet.

Durch Armin Kanitsars Entwicklung können nun auch verzweigte Gefäßstrukturen, so genannte Gefäßbäume, in einer einzelnen Darstellung abgebildet werden. Da die anatomische Zusammengehörigkeit erhalten bleibt, ist die Identifizierung und Positionierung von Gefäßkrankheiten auf einen Blick möglich.

Nach Belieben drehen und wenden

Für die Darstellung von einzelnen Gefäßen stehen drei Basismethoden zur Verfügung, die unterschiedliche Eigenschaften wie Längentreue, Überdeckungsfreiheit und Raumbezug besitzen. Der medizinische Einsatz dieser Darstellung erfordert zusätzlich eine flexible Ausrichtung der Schnittebene. Anders ausgedrückt: man muss das Gefäß "drehen" können.

Auf diesen Basismethoden bauen die Multi-Path Methoden auf, welche die Darstellung von verzweigten Gefäßstrukturen ermöglichen. Um die Eigenschaft der Überdeckungsfreiheit - ein Gefäß verdeckt weder sich selbst, noch ein anderes Gefäß - auch für Gefäßbäume zu ermöglichen, wurde eine spezielle Multi-Path Methode entwickelt. Wie Tentakel eines Tintenfisches werden dabei die Blutgefäße automatisch entwirrt.

Für seine Forschungsarbeit "Curved Planar Reformation for Vessel Visualization", die unter der Leitung von Prof. Eduard Gröller als Dissertationsvater am Institut für Computergraphik und Algorithmen und bei der Firma TIANI Medgraph entstanden ist, wurde Armin Kanitsar von der TU Wien mit dem 13.000,- Euro dotierten "Ressel-Preis" ausgezeichnet. Neben dem persönlichen Erfolg der Auszeichnung für Armin Kanitsar werden diese Mittel einen weiteren Impuls für den Bereich der medizinischen Visualisierung an der TU Wien liefern.

Rückfragehinweis:
Dipl.-Ing. Dr. Armin Kanitsar
Technische Universität Wien
Institut für Computergraphik und Algorithmen
Favoritenstraße 9-11, A-1040 Wien
T: +43-1-58801-18658
Fax: +43-1-58801-18698
mail: kanitsar@cg.tuwien.ac.at

Mag. Karin Peter | idw
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Berichte zu: Algorithmus Radiologe Schnittebene

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Pepper, der neue Kollege im Altenheim
17.08.2017 | Universität Siegen

nachricht Komfortable Software für die Genomanalyse
16.08.2017 | Technische Hochschule Mittelhessen

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten