Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

FMEA für mechatronische Systeme

29.06.2004


Die FMEA (Fehler-Möglichkeits- und Einfluss-Analyse) hat sich als effektive Methode zur Risikoanalyse und Risikoabsicherung in Entwicklung und Produktion bewährt. Bei der Analyse mechatronischer Systeme zeigte sie bisher Schwächen. Wissenschaftler des Fraunhofer IPA haben der FMEA nun auch dieses Anwendungsgebiet erschlossen.



Innovationen und Fortschritt beruhen heute sehr stark auf der Integration von Elektronik in Produkte. Diese Kombination aus mechanischen und elektronischen bzw. elektrischen Systemen wird als mechatronisches System bezeichnet. Mechatronische Systeme machen Produkte wie z. B. Fahrzeuge, sicherer und komfortabler. Allerdings birgt die moderne Elektronik auch ihre Gefahren. Aktuelle Untersuchungen zeigen, dass der Anteil der elektronisch bedingten Fehler im Automobilbau innerhalb der letzten Jahre kontinuierlich zugenommen hat. Die Frage, die sich in diesem Zusammenhang stellt, ist, wie sich derartige ungewollte Systemzustände schon im Vorfeld - also noch während der Systemkonzeption bzw. Entwicklung - erkennen und durch geeignete Maßnahmen beheben lassen. Eine Methode ist die Fehlermöglichkeits- und -einflussanalyse (FMEA). Die FMEA ist eine bewährte und anerkannte Methode zur systematischen, präventiven Risikoanalyse in der Produktentwicklung. Trotzdem weist die FMEA bei der Analyse mechatronischer Systeme noch methodische Schwächen auf. Alexander Schloske vom Fraunhofer IPA hat die FMEA so erweitert, dass sie sich auch für mechatronische und softwareintensive Systeme anwenden lässt.



Die konventionelle FMEA bezieht sich auf monokausale Fehlerzusammenhänge von Systemkomponenten. Schloskes Ansatz dagegen berücksichtigt die Systemzustände der beteiligten Systemelemente und deren Ausfallverhalten, die Kombination von Fehlerursachen sowie die zeitliche Reihenfolge des Auftretens von Fehlerursachen. "Durch eine systematische Reduktion der Fehlerursachen mit Hilfe einer Matrix lässt sich die Methode trotz der resultierenden Kombinatorik mit vertretbarem Aufwand durchführen", erklärt Schloske. Sein Ansatz einer erweiterten FMEA wurde bereits im Rahmen von Industrieprojekten validiert und förderte - mit der konventionellen Vorgehensweise - nicht erkannte Risiken zu Tage. Potenzielle Fehlerzustände, wie sie sich über die Lebensdauer eines mechatronischen Produkts ergeben können, wurden sicher identifiziert. Aufbauend auf den Ergebnissen der Analyse war es möglich, klare Vorgaben für die Entwicklung von Elektronik und Software zu machen, um unsichere Systemzustände zu erkennen und in sichere zu überführen, bzw. den Benutzer über mögliche Gefahren zu informieren.

Die FMEA für mechatronische Systeme wird u. a. am 16. November im IPA-Seminar "Erhöhung von Zuverlässigkeit von mechatronischen Systemen" vorgestellt.

Ihr Ansprechpartner für weitere Informationen:

Fraunhofer-Institut für Produktionstechnik
und Automatisierung IPA
Dr.-Ing. Alexander Schloske
Telefon: +49(0)711/970-1890
E-Mail: alexander.schloske@ipa.fraunhofer.de

Michaela Neuner | idw
Weitere Informationen:
http://www.ipa.fraunhofer.de

Weitere Berichte zu: Elektronik FMEA Fehlerursache Systemzustände

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Datenbrille erleichtert Gehörlosen die Arbeit in der Lagerlogistik
23.02.2018 | Technische Universität München

nachricht Verlässliche Quantencomputer entwickeln
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics