Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige Computersimulation kann Materialeigenschaften für Katalysatoren vorhersagen

05.02.2003


Berliner Max-Planck-Forschern gelingt es mit neuartiger Computersimulation, Eigenschaften von Materialien vorher zu sagen, die in der Katalyse wichtig sind


Katalysatoren spielen eine Schlüsselrolle in vielen technischen Prozessen und im Umweltschutz. Um sie gezielter entwickeln zu können, muss man ihre chemisch aktiven Oberflächen und ihre atomare Struktur genau kennen. Experimentelle und mittlerweile auch theoretische Methoden erlauben zwar sehr detaillierte Einblicke. Doch diese bleiben oft nur auf niedrige Drücke und Temperaturen beschränkt, die sich von den tatsächlichen technologischen Bedingungen erheblich unterscheiden und daher nur bedingt Aufschluss über Gestalt und Reaktionsverhalten eines Katalysators in der Praxis geben. Wissenschaftlern des Berliner Fritz-Haber-Instituts gelang es nun mit Hilfe von Computerberechnungen erstmals, die Struktur und katalytische Aktivität eines Modellkatalysators über den gesamten Druck- und Temperaturbereich, der bei Experimenten und technischen Anwendungen eine Rolle spielt, zu simulieren. Ihre Forschungsergebnisse ermöglichen neue Einblicke, unter welchen Bedingungen Materialoberflächen besonders aktiv werden. Die neue Methode ist zugleich ein wichtiger Schritt, um die heute in Theorie und Laborexperiment noch bestehenden Grenzen für die Katalysatorentwicklung zu überwinden.

Katalysatoren sind bei vielen technischen Prozessen im Einsatz, wie in der Abgasreinigung oder der chemischen Industrie, wo über 90 Prozent aller Produkte im Laufe ihrer Herstellung mit mindestens einem Katalysator in Kontakt kommen. Katalysatoren lenken und beschleunigen chemische Umsetzungen und unterdrücken ungewollte Nebenreaktionen. Doch trotz ihrer hohen ökonomischen und ökologischen Bedeutung ist die Forschung noch weit von einem mikroskopischen Verständnis ihrer Wirkungsweise entfernt - den jeweils geeigneten Katalysator zu finden, gelingt bislang oft nur mit Hilfe aufwändiger Versuchsreihen gepaart mit chemischer Intuition.


Die gezielte Entwicklung neuer Materialien für die heterogene Katalyse erfordert zunächst genaue Kenntnis über den atomaren Aufbau der Oberfläche während der chemischen Reaktion. Leider funktionieren die Techniken, die solche Informationen mit atomarer Auflösung liefern könnten, nicht unter technologisch relevanten Bedingungen, d.h. bei Drücken von mindestens 1 bar (dem Atmosphärendruck) und Temperaturen weit oberhalb der Raumtemperatur. Folglich beruht unser derzeitiges Wissen über Katalysatoroberflächen weitgehend auf Experimenten im Ultrahochvakuum (UHV, bei Drücken kleiner als 1/10 Milliardstel bar). Obgleich diese Experimente von großem Wert für das konzeptionelle Verständnis sind, lassen sich ihre Ergebnisse oft nicht auf die technisch erforderlichen Bedingungen anwenden, ein Umstand, der seit geraumer Zeit mit dem Begriff "Druck- und Materiallücke" (pressure and materials gap) umschrieben wird. An der Überbrückung dieser Lücke, d.h. einer genauen Kenntnis, wie die Katalysatoroberfläche vom Ultrahochvakuum bis hin zum realen technischen Betrieb beschaffen ist, arbeiten Wissenschaftler heute weltweit.

Eine entsprechende "Lücke" besteht auch in der theoretischen Beschreibung der Katalysatoroberflächen: Leistungsfähige quanten-mechanische Rechenverfahren, oft auf der Dichtefunktionaltheorie (DFT, Nobelpreis für Chemie 1998) aufbauend, erlauben zwar die Modellierung immer komplexerer Festkörperoberflächen. Doch auch wenn mit solchen so genannten first principles Rechnungen die atomare Struktur von Oberflächen sehr genau beschrieben werden kann, erstrecken sie sich nicht auf die den Katalysator umgebende Gasphase, d.h. sie laufen quasi bei einem Druck von 0 bar ab und sind daher mit UHV-Experimenten vergleichbar.

Um diese "theoretische Drucklücke" zu umgehen, haben Wissenschaftler des Berliner Fritz-Haber-Institutes jetzt eine spezielle Verknüpfung der Dichtefunktionaltheorie mit klassischen Methoden der Thermodynamik entwickelt. Auf diese Weise gelang es ihnen erstmals, die Oberflächenstruktur eines Modellkatalysators im gesamten Druckbereich vom UHV bis zu technologisch relevanten Bedingungen theoretisch vorherzusagen. Das auf diese Weise erstellte Phasendiagramm (Abb. 1) zeigt, an welchen atomaren Plätzen die beiden Reaktanden Sauerstoff (O) und Kohlenmonoxid (CO) bei welchen Druck- und Temperaturbedingungen chemische Bindungen mit der Oberfläche eingehen (adsorbieren).

Ein solches Phasendiagramm gibt den Wissenschaftlern jetzt genauere Kenntnisse darüber, in welche Richtung die Druck- und Temperaturparameter im Experiment geändert werden können, ohne dass für die Katalyse wichtige Messgrößen dabei beeinträchtigt werden. Dies wiederum ermöglicht es, die bisherigen UHV-Experimente gezielter dafür einzusetzen, um die Wirkungsweise des Katalysators unter bisher nicht zugänglichen technischen Bedingungen zu untersuchen.

Darüber hinaus haben die Forscher aus dem berechneten Phasendiagramm auch jene Druck- und Temperaturbedingungen identifiziert, unter denen eine besonders hohe katalytische Aktivität erwartet werden kann. Die theoretisch ermittelten Bedingungen für das CO-O-Modellsystem stehen im Einklang mit den zuvor im Experiment ermittelten Parametern. Mit ähnlich gearteten Vorhersagen könnte es deshalb möglich werden, den Katalysator in anderen, noch nicht so gut untersuchten Systeme zu optimieren. Bis zu einem wirklich umfassenden mikroskopischen Verständnis der Festkörperkatalyse ist dieser Ansatz allerdings noch wesentlich zu erweitern, meint Prof. Matthias Scheffler, Direktor am Fritz-Haber-Institut. Gerade unter den nun identifizierten katalytisch geeigneten Druck- und Temperaturbedingungen seien einige der bisherigen Annahmen zusammengebrochen. Deshalb müsse eine weiterführende Analyse auf wesentlich aufwändigeren Verfahren der statistischen Mechanik aufbauen, die momentan aber noch nicht handhabbar sind und die Forscher noch einige Jahre beschäftigen könnten.

Dr. Karsten Reuter
Fritz-Haber-Institut der Max-Planck-Gesellschaft
Faradayweg 4-6
14195 Berlin
Tel.: 030 - 84134700
Fax: 030 - 84134701
E-Mail: reuter@fhi-berlin.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht »Lernlabor Cybersicherheit« startet in Weiden i. d. Oberpfalz
12.01.2017 | Fraunhofer-Gesellschaft

nachricht Klick-Tagebuch: App-Projekt der HdM erlaubt neuen Ansatz in Entwicklungsforschung
11.01.2017 | Hochschule der Medien Stuttgart

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungsnachrichten

Wie das Wissen in der Technik entsteht

17.01.2017 | Förderungen Preise

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik