Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige Computersimulation kann Materialeigenschaften für Katalysatoren vorhersagen

05.02.2003


Berliner Max-Planck-Forschern gelingt es mit neuartiger Computersimulation, Eigenschaften von Materialien vorher zu sagen, die in der Katalyse wichtig sind


Katalysatoren spielen eine Schlüsselrolle in vielen technischen Prozessen und im Umweltschutz. Um sie gezielter entwickeln zu können, muss man ihre chemisch aktiven Oberflächen und ihre atomare Struktur genau kennen. Experimentelle und mittlerweile auch theoretische Methoden erlauben zwar sehr detaillierte Einblicke. Doch diese bleiben oft nur auf niedrige Drücke und Temperaturen beschränkt, die sich von den tatsächlichen technologischen Bedingungen erheblich unterscheiden und daher nur bedingt Aufschluss über Gestalt und Reaktionsverhalten eines Katalysators in der Praxis geben. Wissenschaftlern des Berliner Fritz-Haber-Instituts gelang es nun mit Hilfe von Computerberechnungen erstmals, die Struktur und katalytische Aktivität eines Modellkatalysators über den gesamten Druck- und Temperaturbereich, der bei Experimenten und technischen Anwendungen eine Rolle spielt, zu simulieren. Ihre Forschungsergebnisse ermöglichen neue Einblicke, unter welchen Bedingungen Materialoberflächen besonders aktiv werden. Die neue Methode ist zugleich ein wichtiger Schritt, um die heute in Theorie und Laborexperiment noch bestehenden Grenzen für die Katalysatorentwicklung zu überwinden.

Katalysatoren sind bei vielen technischen Prozessen im Einsatz, wie in der Abgasreinigung oder der chemischen Industrie, wo über 90 Prozent aller Produkte im Laufe ihrer Herstellung mit mindestens einem Katalysator in Kontakt kommen. Katalysatoren lenken und beschleunigen chemische Umsetzungen und unterdrücken ungewollte Nebenreaktionen. Doch trotz ihrer hohen ökonomischen und ökologischen Bedeutung ist die Forschung noch weit von einem mikroskopischen Verständnis ihrer Wirkungsweise entfernt - den jeweils geeigneten Katalysator zu finden, gelingt bislang oft nur mit Hilfe aufwändiger Versuchsreihen gepaart mit chemischer Intuition.


Die gezielte Entwicklung neuer Materialien für die heterogene Katalyse erfordert zunächst genaue Kenntnis über den atomaren Aufbau der Oberfläche während der chemischen Reaktion. Leider funktionieren die Techniken, die solche Informationen mit atomarer Auflösung liefern könnten, nicht unter technologisch relevanten Bedingungen, d.h. bei Drücken von mindestens 1 bar (dem Atmosphärendruck) und Temperaturen weit oberhalb der Raumtemperatur. Folglich beruht unser derzeitiges Wissen über Katalysatoroberflächen weitgehend auf Experimenten im Ultrahochvakuum (UHV, bei Drücken kleiner als 1/10 Milliardstel bar). Obgleich diese Experimente von großem Wert für das konzeptionelle Verständnis sind, lassen sich ihre Ergebnisse oft nicht auf die technisch erforderlichen Bedingungen anwenden, ein Umstand, der seit geraumer Zeit mit dem Begriff "Druck- und Materiallücke" (pressure and materials gap) umschrieben wird. An der Überbrückung dieser Lücke, d.h. einer genauen Kenntnis, wie die Katalysatoroberfläche vom Ultrahochvakuum bis hin zum realen technischen Betrieb beschaffen ist, arbeiten Wissenschaftler heute weltweit.

Eine entsprechende "Lücke" besteht auch in der theoretischen Beschreibung der Katalysatoroberflächen: Leistungsfähige quanten-mechanische Rechenverfahren, oft auf der Dichtefunktionaltheorie (DFT, Nobelpreis für Chemie 1998) aufbauend, erlauben zwar die Modellierung immer komplexerer Festkörperoberflächen. Doch auch wenn mit solchen so genannten first principles Rechnungen die atomare Struktur von Oberflächen sehr genau beschrieben werden kann, erstrecken sie sich nicht auf die den Katalysator umgebende Gasphase, d.h. sie laufen quasi bei einem Druck von 0 bar ab und sind daher mit UHV-Experimenten vergleichbar.

Um diese "theoretische Drucklücke" zu umgehen, haben Wissenschaftler des Berliner Fritz-Haber-Institutes jetzt eine spezielle Verknüpfung der Dichtefunktionaltheorie mit klassischen Methoden der Thermodynamik entwickelt. Auf diese Weise gelang es ihnen erstmals, die Oberflächenstruktur eines Modellkatalysators im gesamten Druckbereich vom UHV bis zu technologisch relevanten Bedingungen theoretisch vorherzusagen. Das auf diese Weise erstellte Phasendiagramm (Abb. 1) zeigt, an welchen atomaren Plätzen die beiden Reaktanden Sauerstoff (O) und Kohlenmonoxid (CO) bei welchen Druck- und Temperaturbedingungen chemische Bindungen mit der Oberfläche eingehen (adsorbieren).

Ein solches Phasendiagramm gibt den Wissenschaftlern jetzt genauere Kenntnisse darüber, in welche Richtung die Druck- und Temperaturparameter im Experiment geändert werden können, ohne dass für die Katalyse wichtige Messgrößen dabei beeinträchtigt werden. Dies wiederum ermöglicht es, die bisherigen UHV-Experimente gezielter dafür einzusetzen, um die Wirkungsweise des Katalysators unter bisher nicht zugänglichen technischen Bedingungen zu untersuchen.

Darüber hinaus haben die Forscher aus dem berechneten Phasendiagramm auch jene Druck- und Temperaturbedingungen identifiziert, unter denen eine besonders hohe katalytische Aktivität erwartet werden kann. Die theoretisch ermittelten Bedingungen für das CO-O-Modellsystem stehen im Einklang mit den zuvor im Experiment ermittelten Parametern. Mit ähnlich gearteten Vorhersagen könnte es deshalb möglich werden, den Katalysator in anderen, noch nicht so gut untersuchten Systeme zu optimieren. Bis zu einem wirklich umfassenden mikroskopischen Verständnis der Festkörperkatalyse ist dieser Ansatz allerdings noch wesentlich zu erweitern, meint Prof. Matthias Scheffler, Direktor am Fritz-Haber-Institut. Gerade unter den nun identifizierten katalytisch geeigneten Druck- und Temperaturbedingungen seien einige der bisherigen Annahmen zusammengebrochen. Deshalb müsse eine weiterführende Analyse auf wesentlich aufwändigeren Verfahren der statistischen Mechanik aufbauen, die momentan aber noch nicht handhabbar sind und die Forscher noch einige Jahre beschäftigen könnten.

Dr. Karsten Reuter
Fritz-Haber-Institut der Max-Planck-Gesellschaft
Faradayweg 4-6
14195 Berlin
Tel.: 030 - 84134700
Fax: 030 - 84134701
E-Mail: reuter@fhi-berlin.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Smart Living: VDE-Institut entwickelt Cloud-basierte interoperable Testplattform
15.02.2017 | VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V.

nachricht Saarbrücker Informatiker machen „Augmented Reality“ fotorealistisch
15.02.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie