Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Augsburg Multicore Task Force

25.03.2008
Die Augsburger Informatik bündelt und koordiniert ihre Multicore-Forschungs- und Lehrkompetenzen in der AMCTF.

Um den Herausforderungen zu begegnen, die sich aus dem Umstand ergeben, dass im Laufe der kommenden zehn Jahre Multicore-Prozessoren zur Verfügung stehen werden, die gegenüber Single-Core-Prozessoren eine mehr als hundertfach höhere Verarbeitungsleistung aufweisen, hat sich am Institut für Informatik der Universität Augsburg die "Augsburg Multicore Task Force" (AMCTF) konstituiert.

In ihr kooperieren Arbeitsgruppen von fünf Lehrstühlen und Professuren mit dem Ziel, Konzepte zu entwickeln, die es ermöglichen, zum einen das Potential der neuen Prozessoren sinnvoll auszuschöpfen, weiterhin sequentielle Software für Multicores zu parallelisieren und schließlich Anwendungen unter Nutzung der wesentlich höheren erreichbaren Verarbeitungsgeschwindigkeit komfortabler zu machen.

"Very Large Scale Integration" (VLSI) ermöglicht es heute, bis zu zwei Milliarden Transistoren auf einem Chip zu verbauen. Die Fortschritte in der VLSI-Technologie werden nach Vorhersagen der amerikanischen Semiconductor Industry Association auch in den nächsten zehn Jahren alle 18 Monate eine Verdopplung der Anzahl der Transistoren pro Chip erreichen. Damit würden im Jahre 2020 Mikroprozessor-Chips mit über einer Billion Transistoren Realität werden. Mit der Verkleinerung der Strukturbreiten treten jedoch verstärkt die Probleme der elektrischen Leistungsaufnahme und Kühlung in den Vordergrund.

Eine weitere signifikante Erhöhung der Taktrate zur Steigerung der Verarbeitungsleistung wird in dem Maße, wie sie in der letzten Dekade zu beobachten war, nicht mehr möglich sein. In Zukunft wird die Leistungssteigerung vornehmlich durch die Integration mehrerer oder vieler Prozessorkerne ("Cores") auf einem Chip erreicht werden. Derzeit sind bei den Mikroprozessor-Chips höchster Leistungsfähigkeit zwei bis acht Cores Stand der Technik. Prognosen sehen für das Jahr 2011 Mikroprozessor-Chips mit mehr als 32, für 2014 mit mehr als 128 und im Jahr 2017 mit über 512 Cores vor.

Mehr als hundertfach höhere Verarbeitungsleistung

Derartige Multicore-Prozessoren werden sich gegenüber Single-Core-Prozessoren durch eine um ein Hundert- oder Mehrhundertfaches gesteigerte Verarbeitungsleistung auszeichnen. Anwender-, Tool- und Hardware-Firmen, die sich rechtzeitig auf derartige Prozessoren einstellen, werden einen entscheidenden Wettbewerbsvorteil erringen. Ins Hintertreffen geraten wird dagegen die nur sequentiell ablauffähige Software. Da diese nur auf einem von vielen Cores eines Multicore-Prozessors ablauffähig ist, kann sie in ihrer Ausführungsgeschwindigkeit nicht weiter beschleunigt werden. Für den Großteil der existierenden Software trifft genau dies zu. Es ist zu erwarten, dass schon mittelfristig Firmen, die ihre Software nicht auf Multicores umstellen, gegenüber Konkurrenten mit einer um ein Vielfaches leistungsfähigeren Software ins Hintertreffen geraten werden.

Vor diesem technologischen Hintergrund sehen die Augsburger Informatiker in der zukünftigen Anwendungsentwicklung für Multicore-Prozessoren einen wesentlichen Markt für Informatiker/innen. Die Möglichkeit, viele Prozessoren auf einem Chip fertigen zu können, erfordert geeignete Konzepte, um diese Prozessoren sinnvoll zu nutzen. Dazu gehört die Fortentwicklung heutiger Anwendungen mit dem Ziel, diese unter Nutzung der durch Parallelisierung erreichbaren höheren Verarbeitungsgeschwindigkeit in Zukunft komfortabler zu machen. Weiterhin ist es von großer Bedeutung, Wege aufzuzeigen, wie sequentielle Software für Multicores parallelisiert werden kann.

Gebündeltes Multicore-Forschung für Studierende und Industrie

Initiativen und Förderungen, die das meist an Universitäten beheimatete Know-how der Parallelisierung für Firmen nutzbar machen, sind dringend nötig. In der "Augsburg Multicore Task Force" wird das Forschungs-Know-how der Augsburger Multicore-Forscher gebündelt und in der Lehre sowie interessierten Firmen zur Verfügung gestellt. Die Studierenden der Informatik an der Universität Augsburg werden für die zukünftigen Problemstellungen in der Industrie gerüstet sein.

Die Augsburger Informatiker stellen sich den wichtigen Forschungsfragestellungen in den drei Bereichen der Multicore-Prozessor-Entwicklung, der Programmierwerkzeuge und der geeigneten Parallelisierung der Anwendungen.

Lehrstuhl Ungerer: Hardware und System-Software für eingebettete Multicore-Prozessoren

Am Lehrstuhl für Systemnahe Informatik mit Schwerpunkt Kommunikationssysteme und Internet-Anwendungen von Prof. Dr. Theo Ungerer arbeiten Forschergruppen an Hardware und System-Software für das neue Gebiet der eingebetteten Multicore-Prozessoren - also der Anwendung der Multicore-Technologie in Autos, Flugzeugen und Maschinen -, um durch die erhöhte Leistungsfähigkeit der Prozessoren beispielsweise eine höhere Fahrsicherheit, einen geringeren Spritverbrauch und einen geringeren Schadstoffausstoß durch Autos und Flugzeuge zu erreichen. Ungerer koordiniert das EU-Forschungsprojekt MERASA (Multicore Execution of Hard Real-Time Applications Supporting Analysability), an dem neben der Universität Augsburg Forschergruppen der Universität Toulouse, des Barcelona Supercomputing Center sowie die Firmen Honeywell (Brünn, Tschechei), Rapita Systems (York, England), Infineon (München), NXP aus den Niederlanden, Bauer Maschinen (Schrobenhausen), Airbus in Frankreich und die European Space Agency beteiligt sind.

Lehrstuhl Knorr: Echtzeitfähige eingebettete Systeme für Kommunikationsanwendungen

Auch Arbeitsgruppen von Prof. Dr. Knorr Rudi Knorr (Lehrstuhl für Kommunikationstechnik mit Schwerpunkt Systeme und Netze im Zugangsbereich) und der von ihm geleiteten Fraunhofer-Einrichtung für Systeme der Kommunikationstechnik ESK arbeiten in enger Kooperation mit der Industrie an echtzeitfähigen eingebetteten Systemen für Kommunikationsanwendungen. In einem umfassenden Systemkonzept führen die Wissenschaftler eine neuartige Virtualisierungsschicht (Hypervisor) zwischen Hardware und Betriebssystem ein. Diese abstrahiert alle verfügbaren Ressourcen - von Cores bis zu den Netzschnittstellen, und erlaubt damit mehreren Betriebssystemen parallel auf die Hardware zuzugreifen. Mit dem Hypervisor, der die Ressourcen verwaltet, können mehrere Betriebssysteme und Anwendungen die vorhandenen Ressourcen dynamisch nutzen. Das Zusammenspiel der Komponenten Betriebssystem und Hypervisor erlaubt eine dynamische und optimierte Nutzung der vorhandenen Ressourcen. Die Zuordnung der Rechenoperationen auf die Cores geschieht automatisch, wobei Echtzeitbedingungen eingehalten werden, die im Entwurfsprozess beschrieben und während der Laufzeit dynamisch überwacht werden.

Lehrstuhl Lienhart: Parallelisierung von Anwendungsprogrammen

Eine Forschergruppe von Prof. Dr. Rainer Lienhart (Lehrstuhl für Multimedia Computing) arbeitet an der Parallelisierung von Algorithmen des Maschinenlernens für einen Rechner mit zwei Quadcore-Prozessoren und bringt damit wichtiges Know-how für die Parallelisierung von Anwendungsprogrammen mit ein.

Forschergruppe Bauer: Modellgetriebene Softwareentwicklung für Multicore-Plattformen

Die Arbeitsgruppe von Prof. Dr. Bernhard Bauer (Programmierung verteilter Systeme) beschäftigt sich mit modellgetriebener Softwareentwicklung für Multicore-Plattformen. Ziel ist es, die Softwarerealisierung soweit wie möglich zu automatisieren, um Kosten zu reduzieren, sowie die Wartbarkeit und die Evolution von Softwaresystemen zu verbessern. Dazu werden Beschreibungsmechanismen erarbeitet, um bereits auf Modellebene mögliche Parallelisierungen zu beschreiben bzw. durch geeignete Modellanalysen eine automatische Parallelisierung zu erreichen. Darüber hinaus werden Methodiken, Patterns, Best Practices und Tools entwickelt, die die Softwareingenieure beim Entwurf von großen Anwendungsprogrammen für Multicore-Prozessoren unterstützen.

Forschergruppe Vogler: Modellierung paralleler Aktivitäten

Schließlich stellt Prof. Dr. Walter Vogler sein Know-how aus der Theoretischen Informatik - Modellierung paralleler Aktivitäten mittels Prozessalgebra und Petrinetzen - für die Multicore-Forschergruppe zur Verfügung.

Ansprechpartner:
Prof. Dr. Theo Ungerer
Institut für Informatik
Universität Augsburg
D-86135 Augsburg
Telefon +49(0)821/598-2350
theo.ungerer@informatik.uni-augsburg.de

Klaus P. Prem | idw
Weitere Informationen:
http://www.informatik.uni-augsburg.de/en/forschung/amctf/

Weitere Berichte zu: Multicore Multicore-Prozessor

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Smart Living: VDE-Institut entwickelt Cloud-basierte interoperable Testplattform
15.02.2017 | VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V.

nachricht Saarbrücker Informatiker machen „Augmented Reality“ fotorealistisch
15.02.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie