Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Münchner Forscher sind der Chip-Zeit um zehn Jahre voraus

31.05.2002


Leiterbahnen aus Kupfer mit einer Breite von 40 Nanometern für den Einsatz auf Computerchips der Generation im Jahre 2010 sind bei Infineon bereits in ihrer Funktion bewertet worden.


Infineon verkleinert Kupferdrähte auf ein Tausendstel eines Haares


Infineon Technologies hat die Tür für noch leistungsfähigere Mikrochips aufgestoßen. Forschern des High-Tech-Unternehmens in München ist es gelungen, die Leiterbahnen zur Verbindung von Transistoren auf einem Chip auf bis zu 40 Nanometer (nm) zu verkleinern. Ein Nanometer ist der Millionste Teil eines Millimeters. Infineons schmalste untersuchte Leiterbahnen mit 40 nm entsprechen in etwa dem tausendstel Durchmesser eines Haares. Damit hat Infineon den Beweis erbracht, dass auch bei anhaltender Miniaturisierung von Chip-Strukturen nach dem so genannten "Moore’schen Gesetz" die elektrischen Anforderungen an die Transistor-Verdrahtungen mit heutigen Produktionsmethoden erfüllbar sind.

Gesetz der Chiptechnik: Mehr Transistoren, dünnere Leiterbahnen


Infineons Forschungsergebnisse in der Nanoprozesstechnik sind für die Halbleiter-Industrie ein wichtiger Meilenstein zur weiteren Erfüllung des Moore’schen Gesetzes. Diese These ­ 1965 vom Physiker und Mitbegründer der Intel Corporation Gordon E. Moore formuliert ­ sagt aus, dass sich Leistungsfähigkeit und die Anzahl der Transistoren auf einem Chip innerhalb von 18 Monaten jeweils verdoppeln. Aktuelle Gigahertz-CPUs (Central Processing Unit) der Pentium 4-Reihe mit einer Strukturbreite von 130 Nanometern tragen beispielsweise rund 100 Millionen Transistoren auf dem Prozessorplättchen. Damit das Gesetz von Moore ­ kontinuierlich fortgeschrieben im Entwicklungs-Fahrplan für Halbleiter (International Technology Roadmap für Semiconductors, ITRS) ­ auch künftig Bestand hat, sind ständig dünnere Leiterbahnen zwischen den einzelnen Transistoren notwendig.

Die erfolgreiche, elektrische Bewertung von Metall-Leitungen mit einer Breite von nur 40 Nanometern durch Infineon zeigt, dass sich bereits mit heutigen Mitteln Strukturgrößen zukünftiger Chip-Generationen herstellen lassen könnten, die laut ITRS erst im Jahr 2010 das Licht der Halbleiter-Welt erblicken sollen. Zur Bewertung mussten die Infineon-Forscher Neuland beschreiten, denn die Belichtungsgeräte in den modernsten Chip-Fabriken erlauben heute standardmäßig noch nicht die Erzeugung von Strukturgrößen unter 100 nm. Für kleinere Strukturen wie die 40-nm-Leiterbahnen aus Kupfer bedient sich Infineon der "Spacer"-Technik: Dabei werden zunächst aktuelle Lithografiegeräte für die Belichtungen zum Einsatz gebracht. Im Fertigungsprozess werden dann die erzeugten Grabenstrukturen in den Schichten auf den Silizium-Scheiben nachträglich durch chemische Prozesse verengt. So lassen sich mit Standard-Lithografiesystemen bereits heute Strukturen erzeugen, die in den Chip-Generationen von morgen auftreten werden ­ wenn auch in größerem Abstand voneinander.

Eine Frage der Stromdichte

Infineons Kupfer-Nanoleitungen mussten in den Labors strenge elektrische Anforderungen erfüllen. So wurden für die Bewertung und Beurteilung der Kupfer-Nanoleitungen dieselben Maßstäbe angelegt wie bei den heutigen Strukturgrößen. Neben der sehr wichtigen Wärmeableitung ist bei Chip-Verdrahtungen vor allem eine hohe Beständigkeit gegen Elektromigrations-Effekte wichtig. Hohe Stromdichten führen in metallischen Leitern dazu, dass die Atome (in diesem Fall Kupfer) im Leiter beweglich werden. Dieser Materialtransport im Leiter muss unter allen Umständen unterbunden werden, da er früher oder später unweigerlich zum Ausfall der Leiterbahn führt.

Die Infineon-Forscher "quälten" die Kupfer-Nanoleitungen in ihren Versuchen mit hohen Stromdichten und Temperaturen. Mit standardisierten, international anerkannten Testmethoden hat Infineon eine Lebensdauer (unter normalen Betriebsbedingungen) von etwa 100 Jahren für diese Leiterbahnen ermittelt. Damit ist für Kupferleiterbahnen in den Chips, die in etwa 10 Jahren produziert werden, eine ähnliche Lebensdauer zu erwarten, wie in den heute gefertigten integrierten Schaltungen. In ihren Versuchen erzielten die Experten von Infineon in den 40-nm-Strukturen kurzzeitig Stromdichten von bis zu 100 Millionen Ampere pro Quadratzentimeter. Zum Vergleich: In einem gewöhnlichen Netzkabel mit einem Querschnitt von 1,5 Quadratmillimetern (zugelassen für maximal 16 Ampere) würde bei gleicher Stromdichte ein Strom von über einer Million Ampere fließen.

Reiner Schönrock | Media Relations
Weitere Informationen:
http://www.infineon.com

Weitere Berichte zu: Leiterbahn Nanometer Stromdichte Strukturgrößen Transistor

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Verbesserung des mobilen Internetzugangs der Zukunft
21.07.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht Affen aus dem Weltraum zählen? Neue Methoden helfen die Artenvielfalt zu erfassen
21.07.2017 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten