Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auswirkungen von Klimaänderungen auf die Ozonschicht größer als bisher angenommen

28.04.2004


Forschern ist es gelungen, die Beziehung zwischen dem Ozonabbau in der arktischen Atmosphäre und Klimaänderungen zu bestimmen. Aktuelle Beobachtungen zeigen, dass die Ozonschicht über der Arktis auf Klimaveränderungen erheblich empfindlicher reagiert, als bisher angenommen wurde.


Polare Stratosphären Wolken (PSC), Foto: Ross Salawitch, JPL



Eine im "Geophysical Research Letters " (s.u.) veröffentlichte Studie beweist, dass die Klimabedingungen der Stratosphäre innerhalb der letzten vierzig Jahre den Abbau von Ozon in der Arktis unterstützen. Nach der Auswertung der Ozon-Messdaten der letzten zwölf Jahre konnten die Forscher die Auswirkungen der Temperaturschwankungen auf die arktischen Ozonverluste genau bestimmen: "Für jedes Grad Celsius Abkühlung haben wir mit 15 Dobson Einheiten zusätzlichen Ozonverlustes zu rechnen. Das ist dreimal mehr, als in derzeitigen Modellrechnungen enthalten ist", erklärt der Leiter der Studie Dr. Markus Rex der Forschungsstelle Potsdam des Alfred-Wegener-Instituts für Polar- und Meeresforschung (AWI).



Klimabedingungen in der Stratosphäre unterstützen Ozonabbau

Der langsame Zerfall bereits freigesetzter Fluorchlorkohlenwasserstoffe (FCKW) und Halone wird während der nächsten fünfzig Jahre eine Quelle des Ozon zerstörenden Chlors und Broms sein, obwohl die Produktion dieser Substanzen inzwischen weltweit strikt reguliert und im Wesentlichen verboten ist. Unter normalen Umständen sind die freigesetzten Chloratome in Substanzen gebunden, die die Ozonschicht nicht angreifen. Im polaren Winter jedoch, wenn die Temperaturen in der Stratosphäre, die sich in 15 bis 25 Kilometern Höhe befindet, auf extrem niedrige Werte abfallen, bilden sich so genannte Polare Stratosphärische Wolken (PSC). Durch diese Wolken werden die passiven Chlorverbindungen in sehr reaktive Radikalverbindungen umgewandelt, die überaus effektiv Ozon zerstören, sobald nach der Polarnacht die Sonne in die Polarregionen zurückkehrt.

Kalte Winter - Indikator für Ozonverluste

Eine Auswertung der meteorologischen Daten der letzten vierzig Jahre zeigt, dass die arktischen Winter erheblich kälter wurden. Diese kalten Winter bestimmen wie hoch die Ozonverluste in der arktischen Stratosphäre werden können. Durch die Abkühlung dieser Winter hat sich die maximale Ausdehnung von PSCs über die letzten vierzig Jahre um den Faktor drei erhöht. Die Forscher führen die hohen Ozonverluste während einiger Winter in den 90er Jahren auf diese Klimaveränderung zurück: "Hätten wir in der Stratosphäre noch das Klima der 60er Jahre, würde arktischer Ozonverlust heutzutage kein so relevantes Thema sein, trotz der FCKW-Emissionen", sagt Rex und hebt damit die wichtige Rolle von Klimaänderungen für den Ozonverlust hervor. Eine Abkühlung der Stratosphäre ist eine Begleiterscheinung des anthropogenen Treibhauseffekts: Die Wärmestrahlung von der Erdoberfläche wird in den unteren Luftschichten zurückgehalten, was in der darüber liegenden Stratosphäre zu einer Abkühlung führt. Darüber hinaus können aber auch interne Variabilitäten des Klimasystems oder andere noch unbekannte Faktoren zu der beobachteten Abkühlung beitragen.

Innerhalb der nächsten Jahrzehnte hängt die weitere Entwicklung des Ozonverlustes vom Verhältnis zwischen dem langsamen Abklingen der FCKW-Konzentration und einer möglichen Abkühlung der Stratosphäre ab, die durch die steigende Konzentration des Treibhausgases verursacht wird. "Wenn es in Zukunft zu Abkühlungen um einige Grad Celsius über das bisher beobachtete Maß hinaus kommt, müssen wir mit starken zusätzlichen Ozonverlusten rechnen", sagt Markus Rex und ergänzt, "dass es in der Arktis aber einmal so schlimm wird wie in der Antarktis, wo sich wegen der viel tieferen Temperaturen jedes Jahr ein klaffendes Loch in der Ozonschicht auftut, ist zunächst nicht zu befürchten."

("Arctic ozone loss and climate change", M. Rex (Alfred-Wegener-Institut), R.J.Salawitch (Jet Propulsion Laboratory, California Institute of Technoloy, NASA, USA), P. von der Gathen (Alfred-Wegener-Institut), N.R.P. Harris, (European Ozone Research Coordinating Unit, Cambridge, UK), M.P. Chipperfield (Univ. Leeds, UK), B. Naujokat (Freie Universitaet Berlin), volume 31, doi:10.1029/2003GL018844, 1. Maerz 2004

Maria Santos | AWI
Weitere Informationen:
http://www.awi-bremerhaven.de/AWI/Presse/PM/pm04-1.hj/040427Klima-d.html

Weitere Berichte zu: Klimaänderungen Ozon Ozonschicht Ozonverlust Stratosphäre

Weitere Nachrichten aus der Kategorie Gesellschaftswissenschaften:

nachricht 3, 2, 1, meins: Kaufentscheidungen im Labor erforscht
28.08.2017 | Karlsruher Institut für Technologie

nachricht Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um
26.05.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

Alle Nachrichten aus der Kategorie: Gesellschaftswissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy