Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bayreuther Geoforscher fanden neue aufregende Ergebnisse zur Kristallstruktur des Erdkerns

29.06.2007
Der Kristallaufbau eines (raum-zentrierten) kubischen Festkörpers steht im Mittelpunkt von Forschungsarbeiten einer Wissenschaftlergruppe um Leonid Dubrovinsky vom Bayerischen Geoinstitut der Universität Bayreuth im Rahmen eines Programms der europäischen Wissenschaftsgemeinschaft (European Mineral Sciences Initiative Program). Die Untersuchungen haben erkennen lassen, dass der innere Erdkern aus einer Eisen-Nickel-Legierung mit einer derartigen raum-zentrierten, kubischen Kristallstruktur aufgebaut ist. Die Ergebnisse wurden jetzt in der jüngsten Ausgabe des renommierten Wissenschaftsmagazin Science veröffentlicht.

Vor fast 50 Jahren wurde in Brüssel das "Atomium" als Symbol für das wiedervereinigte Europa der Bevölkerung zugänglich gemacht. Dieses Atommodell entspricht dem Kristallaufbau eines (raum-zentrierten) kubischen Festkörpers. In der kleinsten Zelle des Gitters befinden sich die Gitterpunkte in den Ecken des Würfels und in seinem Zentrum.

Dieses Kristallgitter steht auch im Mittelpunkt von Forschungsarbeiten einer Wissenschaftlergruppe um Leonid Dubrovinsky vom Bayerischen Geoinstitut der Universität Bayreuth im Rahmen eines Programms der europäischen Wissenschaftsgemeinschaft (European Mineral Sciences Initiative Program). Die Untersuchungen haben erkennen lassen, dass der innere Erdkern aus einer Eisen-Nickel-Legierung mit einer derartigen raum-zentrierten, kubischen Kristallstruktur aufgebaut ist.

Der Erdkern, dessen Außenrand 2900 km unter uns liegt, ist der bei weitem unzugänglichste Ort unseres Planeten. Zwar haben Raumschiffe mittlerweile die äußeren Planeten unseres Sonnensystems in Hunderten von Millionen Kilometern Entfernung erreicht, auf der Erde ist die tiefste Bohrung jedoch lediglich bis in 12 km Tiefe vorgestoßen. Es ist nicht nur unmöglich, Proben aus dem Erdkern gewinnen, wir erwarten sogar nicht, jemals über Material von dort für Untersuchungen verfügen zu können. Bisher ermöglichen seismische Untersuchungen als Fernerkundungsmethoden Beobachtungen des Erdkerns. Da der Aufbau der Erde sehr komplex ist, fallen bei seismischen Untersuchungen erhebliche Datenmengen an, die in zweckdienliche Modelle eingefügt werden müssen. Die Entschlüsselung geochemischer Merkmale des Erdkerns anhand von Mantel-Diapiren ("Plumes" - aus dem tiefen Erdmantel zur Erdoberfläche aufsteigende Ströme heißen Materials) ist mit ähnlichen Herausforderungen konfrontiert. Rechnergestützte und speziell experimentelle Simulationen werden dadurch erschwert, dass im Erdkern Drücke über 140 GPa (1.400.000 atm.) und Temperaturen über 3000 Grad Celsius herrschen. Aus diesen Gründen bleiben grundlegende Eigenschaften des Erdkerns weiterhin schwer erforschbar und umstritten.

Dennoch steht der Erdkern mit seinem festen Inneren und seiner flüssigen äußeren Schale im Zentrum größten wissenschaftlichen Interesses, was sowohl auf neuen experimentellen und rechenbetonten Methoden als auch auf weiter entwickelten Auswertungsmöglichkeiten beruht. Neuere Untersuchungen offenbaren eine Anzahl von ungewöhnlichen und rätselhaften Phänomenen hinsichtlich Eigenschaften und Dynamik des Erdkerns. Dazu zählt z.B. die Entdeckung einer Anisotropie im Kerninneren: seismische Wellen breiten sich entlang der Achse zwischen den Polen der Erde schneller aus als in der Äquatorrichtung. Außerdem gibt es Belege für ein unterschiedliches Rotationsverhalten von innerem Kern und dem restlichen Erdkörper. Mit den dynamischen Prozessen im Erdkern ist das irdische Magnetfeld eng verknüpft. Die beschleunigte Wanderung des magnetischen Pols während der vergangenen 150 Jahre macht deutlich, wie wichtig genaue Kenntnisse über die Eigenschaften des Erdkerns für die Menschheit sein können.

Neue Forschungsarbeiten befassen sich mit den Eigenschaften und dem Verhalten von purem Eisen (als mögliches Hauptelement des Erdkerns) unter extremen Druck- und Temperaturbedingungen. Berechungen lassen vermuten, dass eine spezielle kristallographische Form des Eisens (kubisch-raumzentriert) unter Bedingungen des Erdkerns stabil ist. Man leitet jedoch aus kosmochemischen Daten und Untersuchungen von Meteoriten ab, dass der Erdkern auch Nickel in signifikanten Anteilen (5 - 10 %) enthält.

Eine internationale Gruppe von Wissenschaftlern aus Deutschland, Schweden und den USA hat daher eine Eisen-Nickel-Legierung (mit 10 % Ni) bei hohen Drücken und Temperaturen umfangreich experimentell und theoretisch erforscht. Durch eine Kombination der Diamantstempelzellen-Technik mit elektrischen bzw. lasergebundenen Heizmethoden gelang es den Wissenschaftlern, das Probenmaterial Drücken von mehr als 225 GPa und Temperaturen über 3200 Grad Celsius auszusetzen. Diese im Labor experimentell erzeugten Bedingungen würden sind im Erdinneren in einer Tiefe von 4000 km anzutreffen.

Unter derartigen extremen Bedingungen weist die eingesetzte Legierung abrupt Änderungen in den Werten des elektrischen Widerstands auf.

Röntgenbeugungsanalysen offenbaren einen Phasenübergang von der bekannten hexagonalen, dicht gepackten Struktur in eine neue kubisch-raumzentrierte Phase mit einer um ca. 2 % verringerten Dichte. Es lässt sich daraus schließen, dass somit leichte Elemente nicht (oder nur in sehr geringen Anteilen) erforderlich sind, um die mit seismischen Methoden bestimmte Dichte des inneren Erdkerns zu bestätigen. Anders ausgedrückt: Der innere Erdkern besteht möglicherweise allein aus einer Eisen-Nickel-Legierung.

Die gelungene Synthese einer bei hohen Drücken über 230 GPa stabilen, 10% Nickel enthaltenden Eisen-Nickel-Legierung mit einer kubisch-raumzentrierten Struktur könnte nicht nur neue Interpretationen der physikalischen und dynamischen Eigenschaften des festen inneren Erdkern notwendig machen, sie könnte sich auch auf unsere Vorstellungen über den flüssigen äußeren Kern auswirken. Falls Strukturveränderungen in der flüssigen Eisen-Nickel-Legierung auftreten, könnte das zu anderen Dichte- und Rheologiewerten führen und auch die Art der Verteilung leichter Elemente (zum Beispiel Silizium, Magnesium, Aluminium und Natrium) in unterschiedlich strukturierten Bereichen des äußeren Erdkerns betreffen.

Referenz
L. Dubrovinsky, N. Dubrovinskaia O. Narygina, I. Kantor, A. Kuznetzov, V. B. Prakapenka, L. Vitos, B. Johansson, A. S. Mikhaylushkin, S. I. Simak, I. A. Abrikosov. Body-Centred-Cubic Iron-Nickel Alloy in the Earth's Core. Science (29 June 2007)
Weitere Informationen bei:
PD. Dr. Leonid Dubrovinsky
Bayerisches Geoinstitut
Tel. 0921/55-3736
Mail: leonid.dubrovinsky @uni-bayreuth.de

Jürgen Abel | idw
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Berichte zu: Eisen-Nickel-Legierung Erdkern GPa Kristallstruktur Science

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht AWI-Forscher messen Rekordkonzentration von Mikroplastik im arktischen Meereis
25.04.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas
20.04.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde

26.04.2018 | Informationstechnologie

Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst

26.04.2018 | Biowissenschaften Chemie

Berner Mars-Kamera liefert erste farbige Bilder vom Mars

26.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics