Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das weiche Bett der Kontinente

19.01.2007
Wissenschaftler der Universität Jena an grundlegender Entdeckung zur Mineralogie des Erdmantels beteiligt - vierköpfiges Forscherteam veröffentlicht Ergebnisse heute im renommierten "Science"-Journal

Afrika und Europa rücken näher zusammen, Amerika und Europa driften dagegen immer weiter auseinander. Einige Zentimeter verschieben sich die Kontinentalplatten der Erdkruste innerhalb eines Jahres. Wie Eisschollen auf flüssigem Wasser "schwimmen" die massiven Platten dabei auf einer verhältnismäßig weichen Unterlage, der so genannten Asthenosphäre.

Was die etwa 120 Kilometer dicke Schicht aus Silikaten zu einem so weichen Bett für die Kontinentalplatten macht, erklärt Prof. Dr. Falko Langenhorst von der Friedrich-Schiller-Universität Jena: "Seismische Untersuchungen zeigen, dass die Asthenosphäre zu einem geringen Anteil Schmelze - also Magma - enthält", so der Inhaber des Lehrstuhls für Allgemeine und Angewandte Mineralogie und Leibniz-Preisträger 2007.

Warum das Gestein in der Asthenosphäre anschmilzt, war für Geowissenschaftler bislang ein Rätsel. "An der vorherrschenden Temperatur kann es eigentlich nicht liegen", sagt Prof. Langenhorst. Diese beträgt in der Asthenosphäre "lediglich" etwa 1 600 °C und liegt damit in einem Bereich, in dem die Silikate normalerweise fest sind. Der Jenaer Mineraloge Langenhorst und drei Kollegen aus Tübingen, Bayreuth und Boulder (Colorado, USA) suchten deshalb nach einer anderen Erklärung. In der heute (19. Januar) erscheinenden Ausgabe des renommierten Fachjournals "Science" veröffentlicht das vierköpfige Team nun eine plausible Erklärung für das Vorkommen von Gesteinsschmelzen in der Asthenosphäre.

Wie die Forscher in verschiedenen Experimenten zeigen konnten, beruht das Phänomen auf geringen Gehalten an flüssigem Wasser in der Asthenosphäre. "Freies Wasser erniedrigt die Schmelztemperatur von Silikaten ganz entscheidend", weiß Prof. Langenhorst. Je mehr Wasser vorliegt, um so niedriger die Temperatur, bei der die Silikate flüssig werden und quasi als "Schmiermittel" für die Drift der Kontinentalplatten dienen können.

Als Quelle des freien Wassers machten die Geowissenschaftler das Mineral Orthopyroxen aus. "Dieses Mineral ist ein Hauptbestandteil in Gesteinen der Asthenosphäre und zeigt ein ganz merkwürdiges Verhalten", so Langenhorst. In Gegenwart von Aluminium kann dieses ansonsten trockene Mineral wie ein Schwamm Wasser aufnehmen und in seine Kristallstruktur einbauen. "Mit steigendem Druck in der Tiefe des Erdmantels nimmt seine Aufnahmekapazität für Wasser aber schlagartig ab, während die Aufnahmekapazität der anderen Mantelbestandteile nur leicht zunimmt", erläutert Langenhorst. Nach den Berechnungen der vier Geowissenschaftler wird deshalb eine minimale Aufnahmekapazität für Wasser gerade in rund 100 bis 150 Kilometern Tiefe erreicht. "Und das ist genau die Tiefe, in der die Asthenosphäre liegt", so Langenhorst. Das zuvor eingeschlossene Wasser wird in dieser Tiefe frei und bewirkt so das Anschmelzen der Mantelgesteine.

Für ihre Untersuchungen mussten Langenhorst und seine Kollegen die Bedingungen im Erdmantel in aufwändigen Laborexperimenten simulieren. Denn selbst die tiefsten Bohrlöcher reichen gerade einmal zwölf Kilometer in die Erdkruste hinein, während die Asthenosphäre unter den Ozeanen erst in etwa 60 bis 80 Kilometer Tiefe beginnt.

Mit den jetzt veröffentlichten Daten liefern die Geowissenschaftler jedoch nicht nur eine Antwort auf die Frage, was den Boden unter den Kontinentalplatten der Erde weich und nachgiebig macht. "Unsere Ergebnisse erklären außerdem, warum es nicht auch auf anderen Planeten - etwa dem Mars oder der Venus - so etwas wie Plattentektonik gibt", sagt Prof. Langenhorst. "Schließlich kann sich diese nach unserem Modell nur auf Planeten entwickeln, die in ihrem Mantel flüssiges Wasser aufweisen." Und das gibt es, nach heutigem Erkenntnisstand, allein auf der Erde.

Originalpublikation:
Mierdel K, Keppler H, Smyth JR, Langenhorst F. "Water solubility in aluminous orthopyroxene and the origin of the Earth's asthenosphere". Science 2007, Vol. 315, S. 364-368.
Kontakt:
Prof. Dr. Falko Langenhorst
Institut für Geowissenschaften der Universität Jena
Burgweg 11, 07749 Jena
Tel.: 03641 / 948700
E-Mail: Falko.Langenhorst[at]uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen
18.08.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Klimawandel: Bäume binden im Alter große Mengen Kohlenstoff
17.08.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik