Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leben unter extremen Bedingungen

31.01.2002


Übersichtsartikel in Science

Das Wissenschaftsmagazin Science rückt das Thema "Lebensraum Meereis" in seiner aktuellen Ausgabe auf die Titelseite. Dr. David Thomas von der University of Wales-Bangor und Dr. Gerhard Dieckmann vom Alfred-Wegener-Institut für Polar- und Meeresforschung (AWI) sind Verfasser des Übersichtsartikels "Antarctic Sea Ice - Habitat for Extremophiles". Wir informieren hier kurz über die aktuelle Forschung der Arbeitsgruppe am AWI. Eine Übersetzung des Artikels finden Sie in der Anlage. Eine Abbildung schicken wir Ihnen auf Anfrage gern zu.

Das Meereis bedeckt etwa 13% der Erdoberfläche. In den winzigen, stark salzhaltigen Kanälchen, die sich beim Gefrieren des Meerwassers bilden, leben Bakterien, einzellige Mikroalgen und Tiere. Sie gedeihen hier und pflanzen sich fort bei Temperaturen weit unter dem Gefrierpunkt, bei sehr hohen Salzgehalten und sehr geringem Lichteinfall. Wie ihre Anpassung an diesen ungemütlichen Lebensraum funktioniert, wird in verschiedenen Arbeitsgruppen am Alfred-Wegener-Institut für Polar- und Meeresforschung untersucht. Die polare Mikroalge Fragilariopsis cylindrus hat das besondere Interesse der Forscher geweckt. Unter simulierten Freilandbedingungen wächst die Alge hier im Labor in Bremerhaven. Spezialinstrumente messen die Produktion von Sauerstoff in den bewohnten Kanälchen und damit das Wohlbefinden der Alge. Genetische Analysen der Kulturen dienen der Identifizierung der Enzyme, die für die Anpassung an diesen Lebensraum notwendig sind. Da sich Dr. Dieckmann derzeit auf Expedition befindet, steht für weitere Fragen sein Kollege Thomas Mock zur Verfügung (Telefon: 0471 / 4831 - 1893).

Bremerhaven, den 31. Januar 2002
Bitte senden Sie uns bei Abdruck einen Beleg.

Antarktisches Meereis - Ein Lebensraum für Extremophile von Dr. David Thomas und Dr. Gerhard Dieckmann
Erschienen in Science, Vol. 295, No 5555, vom 25. Januar 2002
Übersetzt und zusammengefasst von Thomas Mock

Anders als Süßwassereis bildet Meerwasser beim Gefrieren ein halbfestes, sprödes Material, durchzogen von einem Netzwerk feiner Kanäle und Poren. Sie sind einige Mikrometer bis einige Millimeter groß und mit Salzsole gefüllt, die sich bildet, wenn die Eiskristalle zusammenfrieren.
Die physikalischen und chemischen Eigenschaften des Meereises werden an der Oberseite durch die Atmosphäre bestimmt und an der Unterseite durch das Meerwasser. Hierdurch wird das Meereis zu einer Grenzschicht zwischen Atmosphäre und Ozean mit großen Unterschieden in Temperatur, Salzgehalts, Raum und Licht. Die Temperaturen können an der Oberseite bis zu -20°C erreichen und an der Unterseite auf -1.8°C ansteigen. Dabei ändert sich der Salzgehalt der Sole von 200ppt auf 38ppt bei gleichzeitiger Vergrößerung der Solekanäle an der Unterseite. Der Großteil des eingestrahlten Lichtes wird durch den Schnee und das Eis an der Oberfläche reflektiert. Der eindringende Teil nimmt dann mit zunehmender Tiefe rasch ab. Nur maximal 5% des einfallenden Lichtes gelangt so an die Unterseite.
Die meisten Organismen des Meereises wie Viren, Bakterien, Algen, Protisten, Würmer und kleine Krebse gelangen während der Meereisbildung im Herbst in das Eis. Die aufsteigenden Eiskristalle sammeln diese Mikroorganismen aus dem Wasser und schließen sie in die Solekanäle oder Taschen ein. Aber nur solche Organismen können sich in diesem Lebensraum vermehren, die an diese extremen Bedingungen angepasst sind. Die erfolgreichsten und gleichzeitig auffälligsten Organismen sind Kieselalgen (Diatomeen), die an diese geringen Lichtintensitäten gut angepasst sind und mit ihren photosynthetischen Pigmenten das Eis braun färben. Sie sind eine wichtige Nahrungsgrundlage für den Antarktischen Krill, der sich hauptsächlich im Winter von ihnen ernährt.
Die Anpassung an die tiefen Temperaturen ist eine wichtige Voraussetzung für alles Leben im Meereis. Die meisten Organismen sind bei Temperaturen von über +15°C nicht mehr lebensfähig. Die Gefahr des Einfrierens besteht durch den Entzug von freiem Wasser in den Zellen bei gleichzeitig hohem Salzgehalt der Sole. Unter diesen Bedingungen produzieren die Organismen Osmolyte, mit denen ein Wasserentzug verhindert werden kann.
Ein interessanter Osmolyt und Gefrierschutzstoff bei Meereisalgen ist Dimethylsulfoniumproprionat (DMSP), die Vorstufe des flüchtigen Dimethylsulfides (DMS). DMS gelangt nach Abspaltung von DMSP aus dem Meereis in die Atmosphäre, wo es zu SO3 und Sulfonaten oxidiert wird. Diese wirken als Kondensationskeime für die Wolkenbildung und beeinflussen dadurch direkt die Regulation des Klimas.
Neben den Osmolyten sind besonders kälteangepasste Enzyme mit hoher katalytischer Aktivität bei niedrigen Temperaturen für die Frostresistenz verantwortlich. Auch ein hoher Anteil an mehrfach ungesättigten Fettsäuren (PUFAs) ist eine wichtige Voraussetzung für die Kälteanpassung. Hierdurch wird die Fluidität der Zellmembranen auch noch bei sehr niedrigen Temperaturen gewährleistet. Das ist besonders für den Transport von Nährstoffen und für die Funktion membrangebundener Enzyme wichtig.
Nicht nur intrazellulare Anpassungen spielen eine wichtige Rolle im Leben der Meereisorganismen. Viele Meereisdiatomeen sondern so genannte Eisaktive-Substanzen ab, zu denen beispielsweise Glycoproteine gehören, mit denen sie die Oberflächen und die optischen Eigenschaften der Eiskristalle verändern können, von denen sie umgeben werden. Auch Polysaccharide werden ausgeschieden, die einer Art Schutzfilm um die Zellen bilden.
Diese physiologischen Fähigkeiten ziehen in den letzten Jahren die Aufmerksamkeit von Biotechnologen und Pharmazeuten auf sich, die besonders die kälteangepassten Enzyme und die mehrfach ungesättigten Fettsäuren für den Menschen nutzen wollen. Neben diesen angewandten Aspekten bleibt die Frage, wie sehr sich das gesamte Ökosystem der Polarregionen durch eine Veränderung der Meereisausdehnung aufgrund einer Klimaerwärmung ändern wird. Es ist anzunehmen, dass sich dadurch auch die Verbreitung der Meereisorganismen ändert, was besonders in der Antarktis bedeutende Konsequenzen für den Krill hat, der im Meereis seine Nahrungsgrundlage findet.
Nicht nur auf der Erde rücken die Meereisorganismen in den Focus der Wissenschaft. Die Entdeckung der eisbedeckten Ozeane auf den Jupitermonden Europa und Ganymed treiben Astrobiologen zu enthusiastischen Vorstellungen, dass dieses Eis vielleicht auch Mikroorganismen enthalten könnte. Braun gefärbte Eisschollen auf Europa wecken sehr schnell die Erinnerung an mit Diatomeen besiedeltes Meereis. Doch dieses extraterrestrische Eis ist zwischen 10 und 100km dick bei Temperaturen weit unter - 20°C. Falls dort wirklich Lebensformen existieren oder existierten, scheint es sehr unwahrscheinlich, dass es die gleichen sind wie im Meereis unserer heutigen Erde.

Dipl.-Ing. Margarete Pauls | idw

Weitere Berichte zu: Enzym Lebensraum Meereis Organismus Salzgehalt Temperatur

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Klimawandel schwächt tropische Windsysteme
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht An der Wurzel des Amazonas: Bodentiefe bestimmt Vegetationstyp
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise