Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Meeresströmung verknüpft Nord- und Südhemisphäre in der Eiszeit

09.11.2006
Obwohl Klimazeitreihen grönländischer und antarktischer Eiskerne sehr unterschiedlich aussehen, sind das Klima der Arktis und Antarktis direkt miteinander verbunden.

Die jetzt im Wissenschaftsmagazin nature veröffentlichten Untersuchungen an einem Eiskern aus der Antarktis weisen auf eine prinzipielle Verknüpfung beider Hemisphären durch eine "bipolare Klimaschaukel" hin. Selbst kürzere und schwächere Temperaturveränderungen im Süden sind durch die Änderungen der Meeresströmungen im Atlantik direkt mit den schnellen Temperatursprüngen im Norden verknüpft.

Die Antarktis erwärmte sich in der Zeit von 20.000 bis 55.000 Jahren vor heute immer dann, wenn der Norden kalt und der Export von warmem Wasser aus dem Südozean reduziert war. Umgekehrt begann die Antarktis sich jedes Mal dann abzukühlen, wenn während Wärmeereignissen im Norden vermehrt warmes Wasser in den Nordatlantik strömte. Dieses Ergebnis weist auf eine prinzipielle Verknüpfung beider Hemisphären durch eine "bipolare Klimaschaukel" hin, sobald sich die Ozeanzirkulation im Atlantik ändert.

Wissenschaftlern des Forschungsprojektes EPICA (European Project for Ice Coring in Antarctica) ist es nun gelungen, Klimazeitreihen von Eiskernen aus der Antarktis und von Grönland präzise zu synchronisieren. Dazu nutzen sie die Information vergangener Methankonzentrationen, die in Luftblasen in den Eiskernen archiviert ist. Die Untersuchungen wurden an dem neuen EPICA Eiskern aus Dronning Maud Land (EDML), im atlantischen Sektor der Antarktis durchgeführt. Aufgrund der relativ hohen Niederschlagsrate an diesem Ort können atmosphärische und klimatische Zeitreihen der letzten Eiszeit in diesem Kern zeitlich besser als in Eiskernen aus der Ostantarktis aufgelöst werden. Diese höhere Auflösung war Voraussetzung für die präzise Synchronisation des EDML-Eiskerns mit seinem grönländischen Gegenstück, dem Eiskern des North GReenland Ice core Project (NGRIP). Basierend auf dieser Synchronisation konnten die Wissenschaftler die Ergebnisse aus Grönland und der Antarktis direkt miteinander vergleichen. Dieser Vergleich zeigt, dass die "bipolare Klimaschaukel" im Verlauf der gesamten Eiszeit und vermutlich auch darüber hinaus aktiv war. "Es ist wirklich erstaunlich, wie systematisch dieser Prozess auch für kleinere Klimaschwankungen im Südozean wirkte. Unsere Daten zeigen, dass die Stärke der Erwärmung im Süden linear von der Dauer der Kälteperiode im Norden abhängt", sagt Dr. Hubertus Fischer, Mitautor des Artikels und Paläoklimatologe am Alfred-Wegener-Institut für Polar- und Meeresforschung in Bremerhaven.

Die im Wissenschaftsmagazin nature veröffentlichte Studie fasst die Arbeit der EPICA-Wissenschaftler aus zehn europäischen Ländern zusammen: Belgien, Dänemark, Frankreich, Deutschland, Großbritannien, Italien, die Niederlande, Norwegen, Schweden und Schweiz. "Diese Studie ist ein gutes Beispiel, wie Wissenschaftler aus unterschiedlichen Disziplinen der Eiskernforschung Fächer übergreifend und international zusammenarbeiten. Ozeanmodellierer, Isotopenspezialisten und Glaziologen haben hier ihre Expertise zusammengetragen", so Prof. Dr. Heinz Miller, wissenschaftlicher Leiter von EPICA. Als deutscher Partner von EPICA ist das Alfred-Wegener-Institut für die Durchführung der Eiskern-Bohrung in Dronning Maud Land in der Antarktis verantwortlich. Am Institut in Bremerhaven wird eine Vielzahl der Analysen am Dronning Maud Land-Eiskern und die Fließmodellierung des Eises durchgeführt. Koordiniert unter dem Dach der European Science Foundation (ESF) wird EPICA durch Beiträge der beteiligten Länder und der europäischen Union finanziert. EPICA ist eines der zentralen Forschungsprojekte des Alfred-Wegener-Instituts im Forschungsprogramm "Meeres-, Küsten- und Polarsysteme" im Bereich "Erde und Umwelt" der Helmholtz-Gemeinschaft Deutscher Forschungszentren.

Die Veröffentlichung "One-to-one coupling of glacial climate variability in Greenland and Antarctica" erscheint am 9. November 2006 im Wissenschaftsmagazin nature.

Hinweise für Redaktionen: Ihre Ansprechpartner am Alfred-Wegener-Institut sind Dr. Hubertus Fischer (Tel. 0471/4831-1174; Mobil: 0175/8930172; E-Mail: hufischer@awi-bremerhaven.de) und Prof. Dr. Heinz Miller (Tel. 0471/4831-1210; E-Mail: hmiller@awi-bremerhaven.de). Ihr Ansprechpartner in der Presse- und Öffentlichkeitsarbeit ist Dr. Ude Cieluch (Tel. 0471/4831-2008; E-Mail: medien@awi-bremerhaven.de).

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der gemäßigten sowie hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der fünfzehn Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Margarete Pauls | idw
Weitere Informationen:
http://www.awi-bremerhaven.de/

Weitere Berichte zu: Antarktis Arktis EPICA Eiskern Eiszeit Klimaschaukel Meeresströmung

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stärkere Belege für Abschwächung des Golfstromsystems
12.04.2018 | Potsdam-Institut für Klimafolgenforschung

nachricht Waldbrände in Kanada sorgen für stärkste jemals gemessene Trübung der Stratosphäre über Europa
12.04.2018 | Leibniz-Institut für Troposphärenforschung e. V.

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics