Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Meeresströmung verknüpft Nord- und Südhemisphäre in der Eiszeit

09.11.2006
Obwohl Klimazeitreihen grönländischer und antarktischer Eiskerne sehr unterschiedlich aussehen, sind das Klima der Arktis und Antarktis direkt miteinander verbunden.

Die jetzt im Wissenschaftsmagazin nature veröffentlichten Untersuchungen an einem Eiskern aus der Antarktis weisen auf eine prinzipielle Verknüpfung beider Hemisphären durch eine "bipolare Klimaschaukel" hin. Selbst kürzere und schwächere Temperaturveränderungen im Süden sind durch die Änderungen der Meeresströmungen im Atlantik direkt mit den schnellen Temperatursprüngen im Norden verknüpft.

Die Antarktis erwärmte sich in der Zeit von 20.000 bis 55.000 Jahren vor heute immer dann, wenn der Norden kalt und der Export von warmem Wasser aus dem Südozean reduziert war. Umgekehrt begann die Antarktis sich jedes Mal dann abzukühlen, wenn während Wärmeereignissen im Norden vermehrt warmes Wasser in den Nordatlantik strömte. Dieses Ergebnis weist auf eine prinzipielle Verknüpfung beider Hemisphären durch eine "bipolare Klimaschaukel" hin, sobald sich die Ozeanzirkulation im Atlantik ändert.

Wissenschaftlern des Forschungsprojektes EPICA (European Project for Ice Coring in Antarctica) ist es nun gelungen, Klimazeitreihen von Eiskernen aus der Antarktis und von Grönland präzise zu synchronisieren. Dazu nutzen sie die Information vergangener Methankonzentrationen, die in Luftblasen in den Eiskernen archiviert ist. Die Untersuchungen wurden an dem neuen EPICA Eiskern aus Dronning Maud Land (EDML), im atlantischen Sektor der Antarktis durchgeführt. Aufgrund der relativ hohen Niederschlagsrate an diesem Ort können atmosphärische und klimatische Zeitreihen der letzten Eiszeit in diesem Kern zeitlich besser als in Eiskernen aus der Ostantarktis aufgelöst werden. Diese höhere Auflösung war Voraussetzung für die präzise Synchronisation des EDML-Eiskerns mit seinem grönländischen Gegenstück, dem Eiskern des North GReenland Ice core Project (NGRIP). Basierend auf dieser Synchronisation konnten die Wissenschaftler die Ergebnisse aus Grönland und der Antarktis direkt miteinander vergleichen. Dieser Vergleich zeigt, dass die "bipolare Klimaschaukel" im Verlauf der gesamten Eiszeit und vermutlich auch darüber hinaus aktiv war. "Es ist wirklich erstaunlich, wie systematisch dieser Prozess auch für kleinere Klimaschwankungen im Südozean wirkte. Unsere Daten zeigen, dass die Stärke der Erwärmung im Süden linear von der Dauer der Kälteperiode im Norden abhängt", sagt Dr. Hubertus Fischer, Mitautor des Artikels und Paläoklimatologe am Alfred-Wegener-Institut für Polar- und Meeresforschung in Bremerhaven.

Die im Wissenschaftsmagazin nature veröffentlichte Studie fasst die Arbeit der EPICA-Wissenschaftler aus zehn europäischen Ländern zusammen: Belgien, Dänemark, Frankreich, Deutschland, Großbritannien, Italien, die Niederlande, Norwegen, Schweden und Schweiz. "Diese Studie ist ein gutes Beispiel, wie Wissenschaftler aus unterschiedlichen Disziplinen der Eiskernforschung Fächer übergreifend und international zusammenarbeiten. Ozeanmodellierer, Isotopenspezialisten und Glaziologen haben hier ihre Expertise zusammengetragen", so Prof. Dr. Heinz Miller, wissenschaftlicher Leiter von EPICA. Als deutscher Partner von EPICA ist das Alfred-Wegener-Institut für die Durchführung der Eiskern-Bohrung in Dronning Maud Land in der Antarktis verantwortlich. Am Institut in Bremerhaven wird eine Vielzahl der Analysen am Dronning Maud Land-Eiskern und die Fließmodellierung des Eises durchgeführt. Koordiniert unter dem Dach der European Science Foundation (ESF) wird EPICA durch Beiträge der beteiligten Länder und der europäischen Union finanziert. EPICA ist eines der zentralen Forschungsprojekte des Alfred-Wegener-Instituts im Forschungsprogramm "Meeres-, Küsten- und Polarsysteme" im Bereich "Erde und Umwelt" der Helmholtz-Gemeinschaft Deutscher Forschungszentren.

Die Veröffentlichung "One-to-one coupling of glacial climate variability in Greenland and Antarctica" erscheint am 9. November 2006 im Wissenschaftsmagazin nature.

Hinweise für Redaktionen: Ihre Ansprechpartner am Alfred-Wegener-Institut sind Dr. Hubertus Fischer (Tel. 0471/4831-1174; Mobil: 0175/8930172; E-Mail: hufischer@awi-bremerhaven.de) und Prof. Dr. Heinz Miller (Tel. 0471/4831-1210; E-Mail: hmiller@awi-bremerhaven.de). Ihr Ansprechpartner in der Presse- und Öffentlichkeitsarbeit ist Dr. Ude Cieluch (Tel. 0471/4831-2008; E-Mail: medien@awi-bremerhaven.de).

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der gemäßigten sowie hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der fünfzehn Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Margarete Pauls | idw
Weitere Informationen:
http://www.awi-bremerhaven.de/

Weitere Berichte zu: Antarktis Arktis EPICA Eiskern Eiszeit Klimaschaukel Meeresströmung

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Internationales Team um Oldenburger Meeresforscher untersucht Meeresoberfläche
21.03.2017 | Carl von Ossietzky-Universität Oldenburg

nachricht Weniger Sauerstoff – ist Humboldts Nährstoffspritze in Gefahr?
17.03.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie