Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Methanfresser in der arktischen Tiefsee entdeckt

19.10.2006
Deutsch-französisches Forscherteam weisen neue Methan zehrende Mikroorganismen am Tiefseeschlammvulkan Haakon Mosby nach

Statt Lava fließen Schlamm und Methan aus dem Tiefsee-Schlammvulkan Haakon-Mosby. Das Treibhausgas Methan wirkt rund 25 Mal stärker als Kohlendioxid, wenn es in die Atmosphäre gelangt. Zum Glück gibt es Mikroorganismen, die von Methan leben und so den Ausstoß des Klimagases reduzieren. Erstmals hat jetzt ein deutsch-französisches Forscherteam nachgewiesen, dass solche Methanzehrer auch in der eiskalten arktischen Tiefsee vorkommen. Die Wissenschaftler entdeckten eine neue Gruppe Methan fressender Archaea und Bakterien und beschreiben in der Zeitschrift Nature, welche Umweltfaktoren die Aktivität dieser Mikroorganismen kontrollieren - mit verblüffendem Ergebnis: Zu schnelle Strömungen aus dem Meeresboden verringern die Wirksamkeit des natürlichen Gasfilters um bis zu 60 Prozent (Nature, 19. Oktober 2006).


Im Zentrum des Schlammvulkans strömt das meiste Gas aus (links). In der mittleren Zone siedeln Beggiatoa (Mitte). In der äußeren Zone leben Röhrenwürmer (rechts). Bild: IFREMER

Der nach dem norwegischen Ozeanographen Haakon Mosby benannte gleichnamige Schlammvulkan wurde 1990 von einem internationalen Forscherteam in der Barentssee in einer Wassertiefe von 1250 Metern entdeckt. Aus dem Zentrum des etwa einen Quadratkilometer großen Vulkans strömt neben Wasser und Schlamm auch Gas, das zu 99 Prozent aus Methan besteht und aus rund zwei Kilometer Tiefe unterhalb des Meeresbodens aufsteigt. Helge Niemann und Tina Lösekann vom Max-Planck-Institut für marine Mikrobiologie in Bremen haben in ihren Doktorarbeiten untersucht, ob an der Oberfläche des Schlammvulkans in der -1 Grad Celsius kalten Tiefsee Mikroorganismen vorkommen, die das gefährliche Klimagas Methan verbrauchen.

Leben am Schlammvulkan

Haakon Mosby ist ein sehr flacher Schlammvulkan, der maximal zehn Meter über den Meeresboden herausragt. Die Wissenschaftler aus Deutschland und Frankreich unterscheiden drei stark von einander abgegrenzte, konzentrische ringförmige Zonen: das Zentrum, mittlerer und äußerer Ring. Eine Gemeinsamkeit haben die drei ansonsten völlig unterschiedlich besiedelten Zonen: Methan ist jeweils die Hauptnahrungsquelle der dort lebenden Mikroorganismen. An der Oberfläche des Zentrums entdeckten die Wissenschaftler bisher unbekannte Bakterien, die das Methan mit Sauerstoff umsetzen. In den etwas tieferen Schichten der mittleren Zone aber fanden Helge Niemann und Tina Lösekann große Mengen einer neuen Gruppe von Archaea, die in einer Symbiose mit Bakterien das Methan mit Sulfat veratmen - ohne dafür Sauerstoff zu benötigen. Der zugrunde liegende Prozess ist unter dem Begriff anaerobe Oxidation von Methan (AOM) bekannt und wird im Forschungsprojekt MUMM untersucht.

Zur Verblüffung der Forscher wird der Großteil des Methans nicht im Zentrum, sondern im äußeren Ring des Vulkans veratmet. Hier steigen die gashaltigen Fluide deutlich langsamer auf.

Methan-Filter nur zu 40 Prozent effektiv

Bei ihren Messungen fanden die Forscher heraus, dass am Haakon Mosby nur rund 40 Prozent des austretenden Methans von Mikroorganismen umgesetzt werden. An manchen Methanquellen im Ozean wird dagegen das gesamte austretende Gas veratmet. Bisher war man davon ausgegangen, dass in Gebieten mit hohem Durchfluss an Methan auch deutlich mehr Methan fressende Mikroorganismen leben.

Bei Haakon Mosby ist offensichtlich das Gegenteil der Fall: Das meiste Gas wird in der äußersten Vulkanzone verbraucht. Der Bremer Meeresbiologe Helge Niemann erklärt das so: "Die Mikroorganismen brauchen Sauerstoff oder Sulfat aus dem Meerwasser, um Methan veratmen zu können. Das aus dem Boden nach oben strömende Wasser enthält aber weder Sauerstoff noch Sulfat. Weil es so schnell nach oben strömt, kann nur wenig Sauerstoff oder Sulfat aus dem Meerwasser in den Boden eindringen. Die Mikroorganismen im Zentrum und der mittleren Zone erhalten also schlicht kaum Energie zum Leben."

In der äußeren Zone des Vulkans ist die Situation anders. Röhrenwürmer, die bis zu 60 Zentimeter tief in den Boden wachsen, pumpen aktiv das Meerwasser und damit auch Sulfat in tiefere Bodenschichten. Die an ihren Wurzeln lebenden Organismen können dank dieser lebenden Pumpen auch dort Methan umsetzen, wo es normalerweise kaum möglich wäre. Dort wurde auch der höchste Methanumsatz gefunden und es entweicht fast kein Gas ins Meer. Das zeigt, dass wirksame biologische Filter für Treibhausgase erst durch das komplexe Zusammenspiel von Lebensgemeinschaften im Meeresboden entstehen können.

Unterstützung bekamen Helge Niemann und Tina Lösekann von einem deutsch-französischen Forscherteam, das den Vulkan mit Sonar- und Kamerasystemen genau kartierte und die chemischen Umsatzprozesse bestimmte. Entscheidend war der Einsatz des ferngesteuerten Tauchroboters VICTOR 6000 vom französischen Forschungszentrum IFREMER auf zwei Expeditionen mit dem Forschungsschiff L’ATALANTE (IFREMER) und der FS POLARSTERN des Alfred-Wegener-Instituts in Bremerhaven.

Aussichten
Erstmals konnten im Rahmen des Projektes GEOTECHNOLOGIEN Stoffflüsse und mikrobielle Umsatzprozesse an einem aktiven Tiefsee-Schlammvulkan genau vermessen und modelliert werden. Jetzt muss die Wirksamkeit biologischer Filter auch bei anderen Methanquellen im Meer geprüft werden. Bisher ist diese für die weltweite Klimaforschung wichtige Größe nicht ausreichend berücksichtigt.

Als nächstes untersucht das deutsch-französische Forscherteam im Oktober und November 2006 mit dem Tiefseeroboter QUEST des Bremer Forschungsinstituts MARUM die Schlammvulkane des östlichen Mittelmeeres (METEOR Expedition 70/2). Weitere Expeditionen zum Haakon-Mosby-Schlammvulkan sind im Rahmen des europäischen Forschungsprojektes HERMES vorgesehen.

Beteiligte Institutionen

Max-Planck-Institut für marine Mikrobiologie, 28359 Bremen, Germany

Alfred-Wegener-Institut für Polar und Meeresforschung,
27515 Bremerhaven, Germany
DFG Forschungszentrum Ozeanränder, University of Bremen, 28334 Bremen,
Germany
Centre Ifremer de Brest, BP70, 29280 Plouzane, France
UMR 7156 Université Louis-Pasteur/CNRS, Département Microorganismes, Génomes, Environnement, 67083 Strasbourg Cedex, France

International University Bremen, 28759 Bremen, Germany

Originalveröffentlichung:

Helge Niemann, Tina Lösekann, Dirk de Beer, Marcus Elvert, Thierry Nadalig, Katrin Knittel, Rudolf Amann, Eberhard J. Sauter, Michael Schlüter, Michael Klages, Jean Paul Foucher, Antje Boetius
Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink

Nature, 19 October 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Lösekann Meeresboden Methan Mikroorganismus Schlammvulkan Sulfat Tiefsee Vulkan

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Satelliten erfassen Photosynthese mit hoher Auflösung
13.10.2017 | Max-Planck-Institut für Biogeochemie

nachricht Erforschung des grönländischen 79°-Nord-Gletschers
12.10.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz