Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Berge Druck machen - Gebirge verlangsamt Kontinentalverschiebung

17.10.2006
Die Plattentektonik ist die zentrale Theorie der Kontinentalverschiebung, wonach sich auf der Erdoberfläche mehrere Platten bewegen und dabei aufeinander treffen.

Bislang ungeklärt ist unter anderem, warum sich die Bewegungsrichtung und Geschwindigkeit einzelner Platten im Lauf der Erdgeschichte verändert haben. Giampiero Iaffaldano und Professor Hans-Peter Bunge, Geophysik am Department für Geo- und Umweltwissenschaften der Ludwig-Maximilians-Universität (LMU) München, konnten jetzt mit Professor Timothy H. Dixon von der Rosenstiel School of Marine and Atmospheric Sciences in Miami, USA, zeigen, dass sich die Annäherungsgeschwindigkeit der Südamerikanischen Platte und der westlich daran angrenzenden Nazca-Platte innerhalb der letzten zehn Millionen Jahre um etwa 30 Prozent verringert hat. Wie in der Fachzeitschrift "Geology" berichtet, ist das auf hohe Reibungskräfte zurückzuführen: Das an der Plattengrenze aufgefaltete Altiplano-Plateau übt aufgrund seines Gewichts genug Druck aus, um die Nazca-Platte zu verlangsamen.

"Die äußerste Schicht des Planeten, die Lithosphäre, ist fest und nur etwa 100 Kilometer dick", so Iaffaldano. "Sie besteht aus mehreren Platten, auf die sich die Landmasse der Erde und die Ozeanböden verteilen." Diese Platten schwimmen in langsamer Bewegung auf einer Schicht zähflüssigen, unter hohem Druck stehenden Gesteins, die unter der Lithosphäre liegt. "Echtzeitmessungen davon sind mittlerweile möglich und haben mehrere Zentimeter tektonischer Plattenbewegung angezeigt", berichtet Iaffaldano. "Die Energiequelle für die Aktivität an der Oberfläche sind so genannte Konvektionsbewegungen im zähflüssigen Inneren der Erde." Die Bewegung der Platten macht deren Grenzen zu geologisch äußerst dynamischen Bereichen. Unter bestimmten Umständen kommt es beim Aufeinandertreffen zweier Platten zu einer Subduktion. Dann schiebt sich eine Platte unter die andere. Herrschen besonders komprimierende Bedingungen, kann sich dabei auch Gestein nach oben bewegen und dabei ganze Gebirge auffalten. Ein Beispiel dafür sind auch die Anden Südamerikas. Zwischen deren Hochgebirgsketten im Westen und Osten liegt der Altiplano, eine der ausgedehntesten Hochebenen der Welt.

Die Forscher entwickelten eine globale Computersimulation der Erdmantelkonvektion, die mit realistischen tektonischen Plattenmodellen an der Oberfläche gekoppelt ist. Sie nutzten zudem Daten des neuen "Globalen Positionierungssystems (GPS)". Damit gelang es ihnen erstmals, die Bewegungsänderung der Nazca-Platte vor Südamerika in den letzten zehn Millionen Jahren, also bis in die geologische Zeit des Miozäns zurückreichend, quantitativ zu erklären. Sie konnten anhand von Zeitfenstern zeigen, dass sich die Subduktion der Nazca-Platte unter der Südamerikanischen Platte seitdem deutlich verlangsamt, und zwar um etwa 30 Prozent. Die Computersimulationen belegen aber auch, dass diese Veränderung durch hohe Reibungskräfte an der Plattengrenze verursacht wird. Verantwortlich dafür ist das Altiplano-Plateau in den Zentralanden in Bolivien und Peru, das vor allem seit dem späten Miozän aufgefaltet wird. Anders ausgedrückt: Der heute über 6000 Meter hohe Altiplano übt durch sein enormes Gewicht genug Druck aus, um die Bewegung der Nazca-Platte deutlich abzubremsen.

Mit dieser Studie konnten erstmals die Bewegungsänderung einer Platte erfolgreich "vorhergesagt" werden. Zwei Ergebnisse der Arbeit könnten besonders weit reichende Konsequenzen haben. So sind die oberen 30 Kilometer der Erdoberfläche, der erdbebenreiche Sprödbereich, wichtiger für die Steuerung der Plattentektonik als bislang angenommen. Zudem ergibt sich aus den Resultaten die Möglichkeit, dass das Erdklima direkten Einfluss auf die Plattentektonik haben könnte. Denn die Auffaltung des Altiplano ist Folge der geringen Erosion, einhergehend mit dem dort vorherrschenden Wüstenklima. Auf der anderen Seite ist die Abbremsung der Nazca-Platte Folge der Auffaltung. Zusammen genommen ergibt das eine ganz besondere Wechselwirkung: Stark arides Klima könnte demnach in Regionen mit Gebirgsbildung die Bewegung tektonischer Platten verlangsamen. Diese grundlegenden Zusammenhänge müssen in Zukunft noch weiter gehend untersucht werden. Iaffaldano führte diese Arbeiten im Rahmen seiner Doktorarbeit durch, die in das internationale Doktorandenkolleg "THESIS - Complex Processes in the Earth: Theory, Experiment, Simulations" des Elite-Netzwerks Bayern eingebunden ist.

Publikation:

"Feedback between mountain belt growth and plate convergence", Giampiero Iaffaldano, Hans-Peter Bunge, Timothy H. Dixon, Geology, S. 893-896, Oktober 2006

Ansprechpartner:

Giampiero Iaffaldano
Department für Geo- und Umweltwissenschaften der LMU
Tel.: 089-2180-4220
Fax: 089-2180-4205
E-Mail: giampiero@geophysik.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Gebirge Kontinentalverschiebung Nazca-Platte Platte Plattentektonik

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Nährstoffhaushalt einer neuentdeckten “Todeszone” im Indischen Ozean auf der Kippe
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt
05.12.2016 | Leibniz-Institut für Troposphärenforschung e. V.

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was nach der Befruchtung im Zellkern passiert

06.12.2016 | Biowissenschaften Chemie

Tempo-Daten für das „Navi“ im Kopf

06.12.2016 | Medizin Gesundheit

Patienten-Monitoring in der eigenen Wohnung − Sensorenanzug für Schlaganfallpatienten

06.12.2016 | Medizintechnik