Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Blick in das Innere der Wolken

19.04.2006


Am Freitag, den 21. April 2006 wird der Erdbeobachtungssatellit CloudSat von der NASA auf der amerikanischen Vandenberg Air Force Base in seine Umlaufbahn geschossen. Ausgerüstet mit spezieller Radartechnologie ermöglicht CloudSat den Blick in das Innere von Wolken und liefert Wetter- und Klimaforschern neue Erkenntnisse. An der Entwicklung der wissenschaftlichen Auswerteverfahren der durch CloudSat gewonnen Radardaten waren Mitarbeiter des GKSS-Forschungszentrums in Geesthacht beteiligt.


Beispiel eines Vertikalschnitts durch ein frontales Wolkensystem, das sich bis in zehn Kilometer Höhe erstreckt. Die Daten wurden durch ein vom Boden eingesetztes Wolkenradar erfasst. Die unterschiedlichen Farben geben einen Hinweis auf die Signalstärke der Radarrückstreuung. Foto: GKSS-Forschungszentrum Geesthacht



Wolken verteilen Wasser um und sind deshalb für den Wasserkreislauf auf der Erde von entscheidender Bedeutung. Ob und wie viel es regnet, hagelt oder schneit ist jedoch nicht immer auf den ersten Blick ersichtlich.



Wetter- und Klimaforscher konnten mit Hilfe von Satelliten bisher nur bis zu den Wolkenkanten schauen. ?Mit dem Hochfrequenz-Radar auf CloudSat sind wir in der Lage, die vertikale Mächtigkeit, also die Dicke der Wolken, zu erfassen und deren Inneres besser zu erschließen?, erläutert Dr. Markus Quante, Meteorologe am Institut für Küstenforschung des GKSS-Forschungszentrums in Geesthacht und Mitglied des Wissenschaftsteams des CloudSat-Projekts. Hochfrequenz-Technologie im Gigahertz-Bereich ist besonders für die Raumfahrt geeignet, denn diese Technik benötigt relativ wenig Energie und kann sehr Platz sparend konstruiert werden. Die vom Satelliten ausgesandten Radarstrahlen dringen in die Wolken ein und treffen dort auf Tröpfchen oder Eiskristalle von unterschiedlicher Größe. Im Allgemeinen gilt: je größer die Bestandteile, desto starker ist das reflektierte Radarsignal. ?Mit diesem neuen Instrument kann beurteilt werden, unter welchen Bedingungen es zu Niederschlag kommt und welche Wassermassen die Erde treffen oder in der Wolke verbleiben. Die Kenntnisse dieser Details können unsere tägliche Wettervorhersage verbessern?, verdeutlicht Quante die Erwartungen an CloudSat.

Wolken transportieren jedoch nicht nur Wasser, sondern übernehmen auch eine weitere tragende Rolle in unserem Klimasystem, da sie die Strahlungsbilanz der Erde beeinflussen. Sie reflektieren einfallende Sonnenstrahlung in den Weltraum zurück und haben damit einen kühlenden Einfluss. Ihre Wirkung kann aber auch wärmend sein, da sie vom Erdboden abgestrahlte Wärme zurückhalten und diese nicht in den Weltraum entweicht. Zusätzlich können Wolken geschichtet auftreten, so dass eine Berechnung der Netto-Strahlungsbilanz mit herkömmlichen Satelliten nur schwer oder kaum möglich war.

CloudSat wird mit weiteren Satelliten in Formation fliegen. Dieser Zusammenschluss ermöglicht neben dem Blick in das Innere der Wolken auch die Berechnung der Wechselwirkungen mit anderen Eigenschaften der Atmosphäre, die für das Verständnis des irdischen Wasserkreislaufs und des Klimasystems von Bedeutung sind.

Die von CloudSat gelieferten Informationen über vertikal aufgeschlossene Wolkenfelder und deren Schichtung werden im Institut für Küstenforschung am GKSS-Forschungszentrum genutzt. Die Geesthachter Wissenschaftler bewerten mit Hilfe dieser Daten ihre Modelle zur Berechnung des Transports von Umweltchemikalien in der Küstenregion, da die Verteilung und Rückführung dieser Stoffe zum Boden insbesondere auch von Wolkenprozessen und Niederschlägen abhängig sind.

Bei weiteren Fragen:

Dr. Torsten Fischer
Presse- und Öffentlichkeitsarbeit
GKSS-Forschungszentrum Geesthacht GmbH
Max-Planck-Straße 1
21502 Geesthacht
Telefon: +49 (0) 41 52 / 87 - 1677
Email: torsten.fischer@gkss.de

Dr. Markus Quante
Umweltchemie
Institut für Küstenforschung
GKSS-Forschungszentrum Geesthacht GmbH
Max-Planck-Straße 1
21502 Geesthacht
Telefon: +49 (0) 4152 / 87 - 2378
Email: markus.quante@gkss.de

Die GKSS-Forschungszentrum Geesthacht GmbH mit den Standorten Geesthacht in Schleswig-Holstein und Teltow bei Berlin in Brandenburg ist Mitglied der Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V.. 750 Mitarbeiterinnen und Mitarbeiter engagieren sich in Zusammenarbeit mit Hochschulen und Industrie für Wissenschaft und Entwicklung in den Bereichen Küstenforschung, Funktionale Werkstoffsysteme, Regenerative Medizin sowie der Strukturforschung mit Neutronen und Photonen.

Dr. Torsten Fischer | idw
Weitere Informationen:
http://cloudsat.atmos.colostate.edu/
http://photojournal.jpl.nasa.gov/gallery/snt?start=20

Weitere Berichte zu: CloudSat Küstenforschung Satellit Wolke

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungsnachrichten

Veränderungen in der Geschäftsführung von Phoenix Contact

22.09.2017 | Unternehmensmeldung

Tanzende Elektronen verlieren das Rennen

22.09.2017 | Physik Astronomie