Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die lange Reise zum Meeresboden

14.02.2006


Neue Erkenntnisse zur Rolle des Ozeans im Klimageschehen


Mit dem Bodenwasserschöpfer können Proben in genau bestimmten Abstand vom Meeresboden genommen werden. So kann eine Verteilung von verschiedenen Eigenschaften in Abhängigkeit über dem Meeresboden erforscht werden. Vorraussetzung, um z. B. Transportprozesse abklären zu können. DFG-Forschungszentrum Ozeanränder


Die Meteor dient seit 1986 als schwimmendes Labor u. a. für Geologen, Biologen Physiker und Chemiker und hat so dazu beigetragen, unser Wissen um unseren Planeten, seine Funktionsweise und seine Probleme zu vertiefen. DFG-Forschungszentrum Ozeanränder



Auf einer Expedition vor der Küste Namibias entdeckte ein internationales Wissenschaftler-Team, dass Jahrtausende vergehen können, ehe sich Partikel aus der Wassersäule endgültig am Meeresboden ablagern. Dabei driften die Teilchen oft über weite Strecken aus küstennahen Bereichen in den offenen Ozean hinaus. Da es sich dabei u.a. um Reste von Meeresorganismen handelt, in denen klimawirksamer Kohlenstoff gebunden ist, ist die Entdeckung auch für die Klimaforschung von großem Interesse. Erst wenn die Teilchen in den Meeresgrund eingebettet ist, ist der enthaltene Kohlenstoff dem Klimakreislauf, sprich: dem Treibhausgeschehen, auf lange Sicht entzogen.



Die Wissenschaftler des Bremer DFG-Forschungszentrums Ozeanränder, der Universität Newcastle sowie der Bundesanstalt für Geowissenschaften und Rohstoffe Hannover stellen ihre Befunde in der aktuellen Ausgabe des Fachmagazins Geology vor. Das Team hatte an einer Expedition mit dem deutschen Forschungsschiff "Meteor" im Gebiet des Benguela-Strom vor der Küste Namibias teilgenommen.

"Während unserer Expedition haben wir den Meeresboden und die direkt darüber liegende, von vielen Partikeln getrübte Wasserschicht beprobt", berichtet Dr. Maik Inthorn. "In unseren Labors wurden die Proben dann u.a. mit biogeochemischen Methoden untersucht. Außerdem haben wir das Alter der organischen Überreste bestimmt", sagt der Bremer Geowissenschaftler.

Die Wissenschaftler staunten nicht schlecht, als die Untersuchungsergebnisse vorlagen: "Sie zeigen nämlich, dass ein großer Teil der Partikel bis zu 100 Kilometer verdriftet wird, bevor sie endgültig am Meeresboden abgelagert werden", sagt Inthorns Kollege Dr. Matthias Zabel: "Die Reise führt die Schwebfracht aus den flachen namibischen Küstengewässern zum Kontinentalhang, wo sie in Wassertiefen von etwa 600 bis 1.500 Metern - weitab vom Ort ihrer Entstehung -abgelagert wird", erläutert der Bremer Geowissenschaftler. Dies sei mit gängigen Vorstellungen, nach denen Partikel überwiegend am Entstehungsort vertikal durch die Wassersäule "fallen", nicht vereinbar und erfordere eine Neubewertung der Transportprozesse an Kontinentalrändern, betonen die Meeresforscher. Besonders bemerkenswert: Die "Reise" der Partikel entlang des Meeresbodens kann sich über einige Tausend Jahre hinziehen.

"Wir müssen die jetzt vorliegenden Ergebnisse auch mit den Kollegen aus der Ozeanographie und der Klimaforschung diskutieren", ergänzt Co-Autor Prof. Thomas Wagner. Der Grund: Auftriebsgebiete wie das Benguela-System sind zwar räumlich eng umgrenzt. Wegen ihres Nährstoffreichtums und der daraus resultierenden hohen biologischen Produktivität entziehen sie der Atmosphäre aber besonders viel Kohlendioxid. Wenn aber der Kohlenstoff erst nach etlichen "Umwegen" und nach wesentlich längerer Zeit als bislang angenommen endgültig am Meeresboden deponiert und somit dem Klimakreislauf entzogen wird, hat dies auch Konsequenzen für die Frage, wie das Ablagerungsgeschehen in Klimamodellen berücksichtigt wird.

Die Meteor-Expedition fand im Bereich des Benguela-Stroms statt, dem derzeit produktivsten Auftriebsgebiet des Weltozeans. Kühles und sehr nährstoffreiches Wasser steigt aus größeren Tiefen in das lichtdurchflutete oberste Meeresstockwerk auf. Dadurch kommt es zu extremen Algenblüten. Die mikroskopisch kleinen Meerespflanzen bilden die Nahrungsgrundlage für kleine und große Meerestiere, dem Zooplankton und den Walen. Wie ihre Verwandten an Land betreiben Meeresalgen Photosynthese und nehmen dabei das ursprünglich aus der Atmosphäre stammende und jetzt im Meerwasser gelöste Klimagas Kohlendioxid auf. Sterben die Meeresorganismen, sinken sie Richtung Meeresboden. Dabei wird ein großer Teil der pflanzlichen und tierischen Überreste von Bakterien recycelt. Ein Bruchteil, der für den Kohlenstoffkreislauf jedoch von entscheidender Bedeutung ist, wird am Meeresgrund eingebettet und ist dem globalen Klimakreis damit auf Jahrtausende bzw. Jahrmillionen entzogen.

Weitere Informationen / Bildmaterial / Interviews:
Kirsten Achenbach
Öffentlichkeitsarbeit
DFG Forschungszentrum Ozeanränder
Tel. 0421 - 218-65541
mail: achenbach@marum.de

Kirsten Achenbach | idw
Weitere Informationen:
http://www.rcom-bremen.de
http://www.ozeanraender.de

Weitere Berichte zu: Expedition Kohlenstoff Meeresboden Partikel

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt
05.12.2016 | Leibniz-Institut für Troposphärenforschung e. V.

nachricht Expedition ans Ende der Welt
29.11.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden «Krebssignatur» in Proteinen

05.12.2016 | Biowissenschaften Chemie

Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt

05.12.2016 | Geowissenschaften

Frühwarnsignale für Seen halten nicht, was sie versprechen

05.12.2016 | Ökologie Umwelt- Naturschutz