Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kometenstaub auf dem Weg nach Mainz

18.01.2006


Sauerstoff-Isotopenzusammensetzung in einem Gebiet von 9 x 9 Quadratmikrometern im Acfer 094-Meteoriten. Der Sternenstaub zeigt eine markante Erhöhung des sehr seltenen Isotops mit der Massenzahl 17. © Max-Planck-Institut für Chemie


Sauerstoff-Isotopenbild einer 100 Nanometer dicken Scheibe eines Meteoritenpartikels mit einem Durchmesser von etwa 25 Mikrometern, das aus einem Aerogelblock herausgelöst wurde. © Max-Planck-Institut für Chemie


Auch am Mainzer Max-Planck-Institut für Chemie wurde die erfolgreiche Landung des "Stardust"-Staubkollektors mit Erleichterung und großer Begeisterung aufgenommen, wird doch die Forschungsgruppe von Dr. Peter Hoppe maßgeblich an den Untersuchungen der Proben vom Kometen "Wild 2" beteiligt sein. Ziel der Mainzer Forscher ist es, mithilfe ihrer Ionenmikrosonde Sternenstaub im Kometenmaterial zu identifizieren. Sternenstaub war ein wichtiger Bestandteil des solaren Nebels, aus dem unser Sonnensystem vor etwa 4,6 Milliarden Jahren entstanden ist.


Am 15. Januar war es endlich soweit: Nach fast siebenjähriger Reise, bei der die Raumsonde "Stardust" mehr als 4 Milliarden Kilometer durch unser Sonnensystem zurückgelegt hat, konnte die wertvolle Fracht über der Wüste im US-Bundesstaat Utah abgeworfen werden. Höhepunkt dieser Reise war das Rendezvous mit dem Kometen "Wild 2" im Januar 2004. Der Durchgang der Raumsonde durch den Schweif erfolgte in einem Abstand zum Kometen von etwa 240 Kilometern, wobei Tausende, wenn nicht Hunderttausende von Staubpartikeln eingefangen werden konnten. Neben dem Kometenmaterial sammelte "Stardust" im Verlaufe der langen Reise durch den weitestgehend leeren interplanetaren Raum auch interstellaren Staub. Aufgrund der sehr geringen Partikeldichte im interplanetaren Raum geht man aber davon aus, dass nur sehr wenige interstellare Teilchen mit einer Größe von mehr als einem Tausendstel Millimeter eingefangen werden konnten.

In einer ersten, etwa sechs Monate dauernden Phase wird ein internationales Expertenteam eine erste Charakterisierung des Kometenmaterials vornehmen. Das Expertenteam besteht aus sechs Arbeitsgruppen, die sich den Bereichen Mineralogie/Petrographie, chemische Zusammensetzung, optische Eigenschaften, Isotopen, organische Materie und Einschlagskratern widmen werden. Teil dieses Teams ist die Forschungsgruppe von Dr. Peter Hoppe aus der Abteilung Partikelchemie des Mainzer Max-Planck-Instituts für Chemie. Wenn alles wie geplant läuft, so sollten die ersten Kometenproben Ende Januar auf die Reise nach Mainz gehen. Für Peter Hoppe, einen Schüler des Schweizer Astronomen Paul Wild, dem Entdecker des Kometen "Wild 2", bedeutet dies einen Höhepunkt in der Sternenstaubforschung, die er seit vielen Jahren betreibt. Bis jetzt war man bei den Untersuchungen von Sternenstaub auf Meteorite beschränkt, die diese Relikte ferner, verstorbener Sterne in sehr geringen Mengen enthalten. Kometen repräsentieren das ursprünglichste Material in unserem Sonnensystem. Entsprechend groß ist die Hoffnung, in den "Stardust"-Proben deutlich größere Mengen an Sternenstaub wie auch bis jetzt noch nicht identifizierte Sternenstaubminerale zu finden, um damit ein wesentlich detailliertes Bild von der Entstehungsgeschichte unseres Sonnensystems zu zeichnen.


Als Werkzeug für ihre Untersuchungen stehen den Mainzer Forschern ein hochauflösendes Elektronenmikroskop sowie eine NanoSIMS-Ionenmikrosonde zur Verfügung. Die NanoSIMS ist ein so genanntes Sekundärionenmassenspektrometer und repräsentiert die Schlüsseltechnologie zum Auffinden des häufig nur 100 Millionstel Millimeter großen Sternenstaubs, lässt sich dieser doch anhand spezifischer Isotopenhäufigkeitsanomalien aufspüren (Abb. 1). In den vergangenen Monaten haben die Max-Planck-Forscher in Zusammenarbeit mit Wissenschaftlern der NASA und der Universität Kalifornien in Berkeley umfangreiche Testmessungen durchgeführt. Mit der NanoSIMS-Ionenmikrosonde untersuchten sie dabei Partikel des Allende-Meteoriten, die mit einer Geschwindigkeit von 6,1 km/s in Aluminumfolien und Aerogel - den beiden bei "Stardust" verwendeten Targets - geschossen wurden (Abb. 2). "Wir sind bereit", so Hoppe, "und hoffen, mit unserer NanoSIMS dem Sternenstaub weitere Geheimnisse zu entlocken."

Weitere Informationen erhalten sie von:

Dr. Peter Hoppe
Max-Planck-Institut für Chemie, Mainz
Tel.: 06131 305-244/231
E-Mail: hoppe@mpch-mainz.mpg.de

Dr. Wolfgang Huisl | idw
Weitere Informationen:
http://www.mpch-mainz.mpg.de/

Weitere Berichte zu: Komet Kometenmaterial Sonnensystem Sternenstaub

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Der Satellitenblick auf die Dürre in Kenia
28.06.2017 | Technische Universität Wien

nachricht Bisher unbekanntes Aussterben grosser Meerestiere entdeckt
27.06.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Designte Proteine gegen Muskelschwund

29.06.2017 | Biowissenschaften Chemie

Benzin und Chemikalien aus Pflanzenresten

29.06.2017 | Biowissenschaften Chemie

Hochleitfähige Folien ermöglichen großflächige OLED-Beleuchtung

29.06.2017 | Energie und Elektrotechnik