Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physik-Studenten aus Braunschweig wollen die Brownsche Rotation mit einer Hochgeschwindigkeitskamera aufspüren

20.06.2005


Dem Geheimnis der Brownschen Rotation wollen Studierende der Technischen Universität Braunschweig auf die Schliche kommen. Albert Einstein hat 1905 das Phänomen der "Brownschen Bewegung" beschrieben, das auch für Rotationen gelten muss. Er erkannte, dass kleine Partikel, wie zum Beispiel Staubkörner, in Gasen zuckende Bewegungen vollziehen. Von allen Seiten stoßen nämlich die Moleküle der umgebenden Gase an die zwar größeren, aber ausschließlich unter dem Mikroskop sichtbaren Teilchen. Bislang ist diese "zappelnde" Rotation nur unzureichend erforscht und noch nicht im Experiment beobachtet worden. Jetzt wollen die vier angehenden Physiker die Bewegung filmisch dokumentieren.

... mehr zu:
»Brownsche »Partikel »Rotation

In der Zeit vom 20. bis zum 29. Juni 2005 führen sie zu diesem Zweck im Fallturm Bremen fünfzehn Abwürfe durch. Neben dem grundsätzlichen Interesse an dem physikalischen Phänomen gibt es in der Astrophysik auch Anwendungen der Brownschen Rotation: Diese ungeordnete Rotationsbewegung führt im interstellaren Raum dazu, dass die Staubteilchen nicht die perfekte Ausrichtung besitzen, die sie eigentlich aufgrund der Magnetfelder aufweisen müssten. Eine Folge ist, dass das an ihnen gestreute Licht seine Polarisation verändert. In Molekülwolken und in Planetenentstehungsgebieten führt die Brownsche Rotation zu veränderten Stoß- und Wachstumsbedingungen der Staubteilchen und beeinflusst damit die Zeitdauer der Entstehung größerer Körper.

Die Untersuchung der Brownschen Rotation mikroskopisch kleiner Partikel in verdünnten Gasen ist nur unter den Bedingungen der Schwerelosigkeit zu untersuchen. Im Labor führt das Absinken der Teilchen nämlich immer automatisch zu einer Beeinflussung der Rotation der Partikel. Im Fallturm Bremen dagegen herrscht für 4,7 Sekunden ausgezeichnete Schwerelosigkeit, sodass dort die Partikel relativ zum Gas in Ruhe sind. Somit lassen sich Brownsche Bewegung und Brownsche Rotation und deren gegenseitige Beeinflussung untersuchen.


"Unsere Staubexperimente liefern uns wichtige Informationen über die Entstehung unseres Sonnensystems", erläutert Prof. Dr. Jürgen Blum, Institut für Geophysik und extraterrestrische Physik der TU Braunschweig. "Im Labor und im Fallturm können wir gleichsam künstlichen Planeten bei ihrer Geburt zuschauen. Eine Besonderheit an dieser Fallturmkampagne ist, dass sie ausschließlich von unseren Studierenden durchgeführt wird. Experimentaufbau, -betreuung und -auswertung werden von einem vierköpfigen Team im Rahmen eines Mikrogravitationspraktikums in alleiniger Verantwortung betrieben."

Die fünfzehn Abwürfe im Fallturm Bremen werden freundlicherweise vom Deutschen Zentrum für Luft- und Raumfahrt DLR zur Verfügung gestellt.

Prof. Jürgen Blum ist erreichbar am Institut für Geophysik und extraterrestrische Physik der TU Braunschweig, E-Mail:j.blum@tu-braunschweig.de Tel.-Nr.: 0531-391-5217.

Dr. Elisabeth Hoffmann | idw
Weitere Informationen:
http://www.geophys.tu-bs.de/
http://www.tu-braunschweig.de/

Weitere Berichte zu: Brownsche Partikel Rotation

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Unterschiedliche Erwärmung von Arktis und Antarktis: Forscher sieht Höhenunterschied als Ursache
18.05.2017 | Universität Leipzig

nachricht Wie wirkt sich der Klimawandel auf die Bewohner der Arktis aus?
18.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie