Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bergluft macht leicht

23.02.2005


Forscher der Universität Hannover und der Technischen Universität München untersuchen die Schwerkraft auf der Zugspitze



Am höchsten Punkt Deutschlands, der Zugspitze, ist nicht nur die Luft dünner, auch der Mensch wird leichter. Der Grund dafür liegt in der Schwerkraft, die am Gipfel um ein halbes Promille geringer ist als im Tal bei Garmisch-Partenkirchen, nämlich 9,8005 m/s² anstatt 9,8058 m/s². Ein Bergsteiger von 80 Kilogramm Körpergewicht wiegt auf der Zugspitze also bei einem Höhenunterschied von circa 2.200 Metern 40 Gramm weniger als im Tal. Wissenschaftlerinnen und Wissenschaftler des Instituts für Erdmessung der Universität Hannover und des Lehrstuhls für Astronomische und Physikalische Geodäsie der Technischen Universität München haben im September 2004 erstmals Messungen mit einem hochempfindlichen Freifall-Absolutgravimeter auf der Zugspitze durchgeführt. Diese Messungen erlauben Rückschlüsse auf die Zusammensetzung des Gebirges und könnten sogar die Hebung der Alpen nachweisen.



Die Mitarbeiter des Instituts für Erdmessung der Universität Hannover arbeiten weltweit in geodynamisch (Tektonik) und seismisch (Erdbeben) aktiven Gebieten oder auch in Zusammenhang mit dem Meeresspiegelanstieg (Klimaänderung) in den Küstenregionen Nordeuropas. Die dafür benötigten Feldgravimeter können nur dann für die hochgenaue Überwachung von Erdmassenverlagerungen eingesetzt werden, wenn deren Eichung sehr präzise bekannt ist. Deshalb wurden im Jahre 2004 vier wissenschaftliche Absolutschwerestationen in den deutschen Alpen eingerichtet. Zwei Stationen befinden sich auf der Zugspitze, eine oben auf dem Wank und eine am Fuße des Wanks (Garmisch-Partenkirchen). Damit wurde eine Eichlinie mit möglichst großen Gravitationsunterschieden und mit möglichst kurzen Fahrzeiten eingerichtet.

Die Schwerkraft oder Gravitation der Erde verändert sich besonders stark mit der Höhe und hat oben auf der Zugspitze den niedrigsten Wert Deutschlands. Dieser Punkt hat somit eine einzigartige Bedeutung für die Eichung von Schweremessinstrumenten. Wissenschaftlich interessant ist der Zugspitzengipfel auch deshalb, weil sich dort über lange Zeit kleine Schwerkraftveränderungen bestimmen lassen, die mit dem Abschmelzen der Alpengletscher und mit dem langsamen Wachstum des Faltengebirges Alpen verbunden sind.

"Der wesentliche Beitrag der Universität Hannover bei diesen Messreihen war die Absolutschweremessung, die nicht direkt auf dem Gipfel, sondern in einem benachbarten Gebäude durchgeführt wurde", erläutert Prof. Jürgen Müller vom Institut für Erdmessung. "Dieser Wert wurde durch Relativschweremessungen auf den Gipfel übertragen, GPS-Messungen dienen der Positionsbestimmung, damit genau nachgeprüft werden kann, wo welcher Schwerewert gemessen worden ist."

Die hochgenaue Bestimmung der Schwerkraft auf den Stationen wurde erst durch den Einsatz eines neuartigen Freifall-Absolutgravimeters möglich, das Ende 2002 mit Unterstützung vom Bund und Land Niedersachsen über die VolkswagenStiftung für das Institut für Erdmessung der Universität Hannover beschafft werden konnte. Für jede Stationsbestimmung sind mehrere tausend Freifallversuche erforderlich. Dabei wird ein Glaskörper entlang eines Laserstrahls im Hochvakuum fallengelassen, um dabei die zurückgelegte Fallzeit und den Fallweg mit einem Bruchteil einer Nanosekunde bzw. eines Nanometers (1 nm = 1 Millionstel eines Millimeters) zu messen.

Dr. Stefanie Beier | idw
Weitere Informationen:
http://www.uni-hannover.de

Weitere Berichte zu: Erdmessung Freifall-Absolutgravimeter Schwerkraft Zugspitze

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stagnation im tiefen Südpazifik erklärt natürliche CO2-Schwankungen
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht Birgt Mikroplastik zusätzliche Gefahren durch Besiedlung mit schädlichen Bakterien?
21.02.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics