Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einfluss der Sahara-Sandstürme auf das globale Klima

20.02.2004


DFG genehmigt neue Forschergruppe - Sieben Einrichtungen beteiligt - Strahlungseffekte von Mineralstaub in der Atmosphäre bisher unbekannt.



Im Februar des Jahres 2000 fegte ein Sandsturm über den atlantischen Ozean und bedeckte eine Fläche von der Größe Spaniens mit einer dichten Wolke aus Sahara-Staub. Atmosphärenphysikern war das Phänomen nicht neu, das Ausmaß von rund 500.000 Quadratkilometern allerdings war beträchtlich. Staub aus der Sahara-Wüste wird regelmäßig von Winden und warmer Luft bis zu 5.000 Meter hoch in die Atmosphäre getragen und zieht dann über den Atlantik bis in die Karibik oder an die südamerikanische Küste und das Amazonas-Gebiet. "Wenn bei uns im Frühjahr eine staubig-schmirgelige Schicht die Autos bedeckt, ist es auch Staub aus der Sahara, der über die Alpen kommt", erzählt Dr. Lothar Schütz vom Institut für Physik der Atmosphäre der Johannes Gutenberg-Universität Mainz über die Wanderungen seines Forschungsobjekts.



Schütz befasst sich seit 30 Jahren mit dem Sahara-Staub und gehört einer Forschergruppe an, die in den kommenden drei Jahren die Verteilung und Verbreitung der Staubpartikel eingehend untersuchen wird. An dem Projekt mit der Bezeichnung "SAMUM" - so heißt der trockenheiße Sandwind der Sahara-Wüste - sind Wissenschaftler aus ganz Deutschland beteiligt. Die Deutsche Forschungsgemeinschaft (DFG) hat dafür einen Betrag von Euro 1.100.000.- bewilligt. Zum "SAMUM-Konsortium" mit sieben Forschergruppen gehört das Deutsche Zentrum für Luft- und Raumfahrt (DLR), das Leibniz-Institut für Troposphärenforschung in Leipzig, das Max-Planck-Institut für Biogeochemie in Jena, das Institut für Meteorologie der Universität München, das Institut für Mineralogie der Technischen Universität Darmstadt, das Institut für Umweltphysik und Fernerkundung der Universität Bremen und das Institut für Physik der Atmosphäre der Universität Mainz. Das Mainzer Team mit Univ.-Prof. Dr. Ruprecht Jaenicke, Dr. Lothar Schütz und Dr. Konrad Kandler ist Teil der gemeinsamen Gruppe mit der TU Darmstadt unter Univ.-Prof. Dr. S. Weinbruch, die sich zum Ziel gemacht hat, die Zusammensetzung und die räumliche Verteilung des Mineralstaubs in der Atmosphäre zu untersuchen.

Hintergrund des neuen Forschungsprojekts ist die weltweite Klimaveränderung in den vergangenen Jahren. "Es wird wärmer werden", so Schütz. "Wie, das kann heute noch niemand sagen." Die Frage ist nun, ob in der Atmosphäre auch Prozesse ablaufen, die dem Temperaturanstieg entgegenwirken. Starke Sandstürme, so die Vermutungen, könnten dabei eine bedeutende Rolle spielen. Staubpartikel in der Atmosphäre tragen zur Wolkenbildung bei und sie können Sonnenstrahlung in den Weltraum rückstreuen oder aber die Energie speichern, je nachdem, ob es sich um helle oder dunkle Partikel handelt. Insgesamt gelangen jährlich rund fünf Milliarden Tonnen Staubteilchen oder Aerosolpartikel durch natürliche und anthropogene Prozesse in die Atmosphäre. Der Mineralstaub aus den Wüsten der Erde hat daran einen Anteil von 1,5 Milliarden Tonnen und wiederum 60 Prozent davon entstammen dem Wüstenkomplex der Sahara. "Uns interessieren die Stoffe, die in den Ferntransport gehen, und das sind etwa 400 Millionen Tonnen", rechnet Schütz vor. "Ferntransport", das heißt bis zu 10.000 Kilometer. So bedienen die Wüsten in China den Pazifik, die Transportdistanz reicht bis Alaska und Grönland. "Saharastaub geht regelmäßig in die Karibik, erreicht aber auch Europa, manchmal sogar zehn Mal im Jahr."

Aber ob der Mineralstaub aus den Sandstürmen in der Atmosphäre zur Abkühlung führt oder aber eine Erhöhung der Temperatur bewirkt, ist unbekannt. "Noch ist unklar, in welche Richtung der Effekt geht, daher wollen wir dieser Sache auf die Spur kommen", erklärt Schütz. Die ersten Feldexperimente werden die Wissenschaftler am Rand der Sahara in Südmarokko durchführen. An einer Bodenstation wird Staub gesammelt und vermessen. Lidar-Messungen werden später mit hochenergetischen Lasern Aufschluss über das Staubvorkommen in der Atmosphäre und die Wolkenbildung liefern. Für Messungen aus geringer Höhe wird eine Turbopropmaschine eingesetzt, eine Falcon der DLR wird bis in die obere Troposphäre in Höhe von zehn, zwölf Kilometer steigen und schließlich werden auch Satelliten genutzt: Daten der europäischen ENVISAT-Mission und Ergebnisse der geplanten US-französischen CALIPSO-Mission werden in die Auswertung einbezogen. Für die Vernetzung der verschiedenen Arbeitsgruppen und die Datenverarbeitung kommt eine neu entwickelte Software der DLR zum Einsatz. Die Messergebnisse der Expedition in der Sahara werden dazu dienen, die numerischen Computer-Simulationen des Staubtransports in der Atmosphäre zu überprüfen und besonders die Übertragung der Sonnenstrahlung in den Staubschichten und am Boden zu berechnen. Ende 2006 sollen Schätzungen über die klimatischen Auswirkungen der Sahara-Sandstürme vorliegen.

Kontakt und Informationen:

Institut für Physik der Atmosphäre
Dr. Lothar Schütz
Tel. 06131 - 39-22865, Fax -23532
E-Mail: schuetz@mail.uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de/FB/Physik/IPA/welcome.html
http://seawifs.gsfc.nasa.gov/SEAWIFS/HTML/dust.html
http://visibleearth.nasa.gov/Atmosphere/Aerosols/Dust_Ash.html

Weitere Berichte zu: DLR Mineralstaub Sahara Sahara-Sandstürme

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Einblicke unter die Oberfläche des Mars
21.07.2017 | Jacobs University Bremen gGmbH

nachricht Tauender Permafrost setzt altes Treibhausgas frei
19.07.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie