Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Glühende Urgewalten unter dem Eis

09.07.2003


Ergebnisse einer deutsch-amerikanischen Arktis-Expedition zum Gakkelrücken stellen bisherige Vorstellungen über die Bildung neuen Meeresbodens in Frage


Der amerikanische Forschungseisbrecher USCGC Healy und das deutsche Forschungsschiff PSF Polarstern auf Expedition im Arktischen Meer.

Foto: Henry Dick, Woods Hole Oceanographic Institution / NSF


Bergung einer Gesteinsprobe an Bord des deutschen Forschungsschiffs PFS Polarstern.

Foto: Max-Planck-Institut für Chemie



Unter dem Eis der Arktis erstreckt sich ein gewaltiger Gebirgszug, der Gakkel-Rücken, der mit Tälern, die bis zu 5.500 Meter unter die Meeresoberfläche reichen, und Gipfeln in einer Meerestiefe von 600 Metern mächtiger als die Alpen ist. Diese Nahtstelle der Kontinentalverschiebung im Nordpolarmeer und seine Entstehung zu erkunden, war Ziel der internationalen AMORE-Expedition (Arctic Mid-Ocean Ridge Expedition) mit dem US-amerikanischen Forschungseisbrecher "USCGC Healy" und der deutschen "PFS Polarstern", an der auch Wissenschaftler des Max-Planck-Instituts für Chemie beteiligt waren. Entgegen ihren Erwartungen eines "anämischen" Vulkanismus fanden die Forscher überraschend starke magmatische Aktivität im Ost- und Westteil des Gebirgsrückens sowie hydrothermale Quellen, die zu den stärksten an mittelozeanischen Rücken gehören. Vor allem aber zeigen die Ergebnisse dieser Expedition, wie wichtig es ist, wissenschaftliche Modellvorstellungen durch die kontinuierliche Erforschung von Struktur, chemischen Prozessen und Verhalten unseres Planeten zu überprüfen (Nature, 26. Juni 2003).



Der Gakkel-Rücken erstreckt sich unter dem Arktischen Meer über 1.800 Kilometer vom Norden Grönlands bis nach Sibirien. Er ist der nördlichste Ausläufer des mittelozeanischen Rückensystems, jener gewaltigen 75.000 Kilometer langen vulkanischen Gebirgskette unter dem Meer, in der durch aufsteigendes Magma neuer Meeresboden, ozeanische Kruste, entsteht. Der Gakkel-Rücken ist für Geowissenschaftler besonders interessant, weil er mit einem Zentimeter pro Jahr der sich am langsamsten spreizende Ozeanrücken auf der Erde ist, 20 Mal langsamer als beispielsweise der wesentlich besser erforschte Ostpazifische Rücken. Die Erforschung dieser langsamen Spreizung verspricht eine Reihe von geologischen Effekten, die Aufschluß über die Bildung der gesamten ozeanischen Kruste ermöglichen sollten.

Die Wissenschaftler erwarteten deshalb am Gakkel-Rücken einen Vulkanismus, der mit der Geschwindigkeit der Spreizung der Platten abnimmt, und keine bzw. allenfalls eine geringe hydrothermale Aktivität. Tatsächlich aber fanden sie eine sehr starke Vulkanaktivität. "Wir hatten erwartet, dass der Magmatismus von Westen nach Osten stetig abnimmt und schließlich ganz aufhört. Stattdessen war die Magmaproduktion im mittleren Bereich des Rückens völlig erloschen, um dann weiter nach Osten wieder dramatisch anzusteigen," sagt Dr. Jonathan Snow, Leiter der Forschungsgruppe am Max-Planck-Institut für Chemie in Mainz, die für die petrologischen und geochemischen Untersuchungen der gefundenen Gesteinsproben zuständig war.

Auch heiße Quellen kommen im Gebiet des Gakkel-Rückens viel häufiger vor als erwartet. "Wir gingen von einem hydrothermal toten Rücken aus," so Snow, "aber jedes Mal, wenn wir unser Messinstrument aus dem Meer zogen, gab es Hinweise auf hydrothermische Aktivität, und einmal sahen wir sogar eine aktive heiße Quelle auf dem Meeresboden." Die Biologen, die an der Expedition teilnahmen, sind der Meinung, primitive Lebensgemeinschaften könnten an den heißen Quellen über lange Zeit von jeder Verbindung zu anderen Teilen der Weltmeere ausgeschlossen gewesen sein und deshalb möglicherweise archaische Formen konserviert haben.

Die zentrale Region des Gakkel-Rückens ist mit ihrer fehlenden magmatischen Aktivität einzigartig im mittelozeanischen Rückensystem: Hier ist keinerlei vulkanische Kruste vorhanden. Die Wissenschaftler konnten Gesteinsproben sammeln, die direkt aus dem oberen Bereich des Erdmantels stammen. In jedem anderen Teil der Erde ist der Erdmantel von einer Tausende Meter dicken Schicht aus Krustengestein bedeckt. "Ich traute meinen Augen kaum, als ich durch das Mikroskop schaute, sagte Snow, einige dieser Proben sahen aus, als ob sie wie durch einen Zauber geradewegs aus dem oberen Erdmantel gekommen wären, nicht die Spur einer Veränderung durch Meerwasser war zu bemerken."

Die am Gakkel-Rücken gewonnenen Erkenntnisse führen die Wissenschaftler zu dem Schluss, dass nicht allein die Spreizungsgeschwindigkeit maßgeblich für die vulkanische Aktivität in einem Gebiet ist. Vielmehr sind andere Faktoren, wie die chemische Zusammensetzung oder die Temperatur des Mantelgesteins in der Tiefe ebenfalls wichtig für das Verständnis der Entwicklung und Eigenschaften ozeanischer Rücken.

Weitere Informationen:

Max-Planck-Institut für Chemie
PD Dr. Jonathan Snow
Tel.: 06131 - 305-202
Fax.: 06131 - 371-051
E-Mail: jesnow@mpch-mainz.mpg.de

Dr. Jonathan Snow | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.maxplanck.de/instituteProjekteEinrichtungen/institutsauswahl/chemie/index.html

Weitere Berichte zu: Erdmantel Gakkel-Rücken Kruste Meeresboden

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Einblicke unter die Oberfläche des Mars
21.07.2017 | Jacobs University Bremen gGmbH

nachricht Tauender Permafrost setzt altes Treibhausgas frei
19.07.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten