Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stratosphärische Ozonchemie als wichtiger Faktor für atmosphärische Strömungsmuster identifiziert

10.03.2008
Heutige Klimamodelle enthalten noch zu viele Unsicherheiten

Wechselwirkungen zwischen der stratosphärischen Ozonchemie und der atmosphärischen Strömung führen zu deutlichen Änderungen von Luftströmungsmustern vom Erdboden bis in die Stratosphäre.

Dies ist das Ergebnis von Klimasimulationen, die jetzt in der Zeitschrift "Geophysical Research Letters" (Brand et al, Geophys. Res. Lett.) veröffentlicht wurden.

Wissenschaftler der Forschungsstelle Potsdam des Alfred-Wegener-Instituts für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft haben damit einen fundamentalen Prozess für die Klimazusammenhänge in der Arktis untersucht. Bislang ist unklar, wie die natürlichen Schwankungen in den atmosphärischen Strömungsmustern entstehen, die eine große Rolle für die Klimaänderungen in den letzten Jahrzehnten spielen. Dieses Grundlagenwissen ist notwendig, um die noch mit vielen Unsicherheiten behafteten Klimamodelle zu verbessern.

... mehr zu:
»Klimamodell »Ozonchemie

Die atmosphärische Strömung folgt bevorzugten Mustern, wobei das wichtigste Muster für die Nordhalbkugel die Arktische Oszillation ist. Dabei handelt es sich um eine großräumige Schwingung der Atmosphäre, die durch entgegengesetzte Luftdruckanomalien in der zentralen Arktis und in Teilen der mittleren und subtropischen Breiten gekennzeichnet ist und sich in Jahrzehnte dauernden Schwingungen mal stärker und mal schwächer ausprägt. In der positiven Phase, die seit etwa 1970 vorherrscht, ist der winterliche Polarwirbel sehr stabil und der Austausch von Luftmassen zwischen mittleren und hohen Breiten ist eingeschränkt. In den mittleren Breiten treiben starke Westwinde im Winter warme Atlantikluft nach Nord- und Mitteleuropa und Sibirien. In der negativen Phase der Arktischen Oszillation kann die kalte Polarluft weiter nach Süden vordringen und beschert Europa strenge Winter.

Bislang werden in komplexen, globalen, gekoppelten Atmosphären-Ozean-Klimamodellen die gegenseitigen Wechselwirkungen zwischen chemischen Prozessen in der Stratosphäre und der Zirkulation in der Tropo- und Stratosphäre (0 bis 10 Kilometer Höhe bzw. 10 bis circa 50 Kilometer Höhe) nicht berücksichtigt. Die Wissenschaftler des Alfred-Wegener-Institutes haben nun erstmals in ein Atmosphären-Ozean-Klimamodell ein Modul der stratosphärischen Ozonchemie eingefügt. Durch einen Vergleich von Simulationen des Standardmodells und des um die Ozonchemie ergänzten neuen Modells konnten die Wissenschaftler zeigen, dass die Ozonchemie einen deutlichen Einfluss auf die Arktische Oszillation hat. Änderungen der atmosphärischen Strömung und der Temperaturverteilung führen zu einer Verstärkung der winterlichen negativen Phase der Arktischen Oszillation.

"Unsere Untersuchungen leisten einen entscheidenden Beitrag zur Reduzierung der Unsicherheiten bei der Simulation des gegenwärtigen Klimas. Die heutigen Klimamodelle sind, anders als oft behauptet wird, noch mit zahlreichen Unsicherheiten behaftet. Erst wenn wir die grundlegenden Prozesse in der Arktis verstehen, können wir diese Fehler quantifizieren und ausmerzen", sagte Dr. Sascha Brand, Hauptautor der vorgestellten Studie des Alfred-Wegener-Instituts. Die Ergebnisse lassen erwarten, dass die Berücksichtigung der Wechselwirkung zwischen atmosphärischer Strömung und stratosphärischer Ozonchemie sich auch in Simulationen der zukünftigen Klimaentwicklung auf die Stabilität des Polarwirbels auswirkt und deshalb unbedingt in Klimamodelle einbezogen werden muss. In einem Folgeprojekt soll das neue Modell für Berechnungen der zukünftigen Klimaentwicklung eingesetzt werden.

Brand, S., K. Dethloff, and D. Handorf (2008), Tropospheric circulation sensitivity to an interactive stratospheric ozone, Geophys. Res. Lett., doi:10.1029/2007/GL032152

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der mittleren und hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der fünfzehn Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Margarete Pauls | idw
Weitere Informationen:
http://www.awi.de/

Weitere Berichte zu: Klimamodell Ozonchemie

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur
22.06.2017 | Fraunhofer-Gesellschaft

nachricht Ursuppe in Dosen
21.06.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie