Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stratosphärische Ozonchemie als wichtiger Faktor für atmosphärische Strömungsmuster identifiziert

10.03.2008
Heutige Klimamodelle enthalten noch zu viele Unsicherheiten

Wechselwirkungen zwischen der stratosphärischen Ozonchemie und der atmosphärischen Strömung führen zu deutlichen Änderungen von Luftströmungsmustern vom Erdboden bis in die Stratosphäre.

Dies ist das Ergebnis von Klimasimulationen, die jetzt in der Zeitschrift "Geophysical Research Letters" (Brand et al, Geophys. Res. Lett.) veröffentlicht wurden.

Wissenschaftler der Forschungsstelle Potsdam des Alfred-Wegener-Instituts für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft haben damit einen fundamentalen Prozess für die Klimazusammenhänge in der Arktis untersucht. Bislang ist unklar, wie die natürlichen Schwankungen in den atmosphärischen Strömungsmustern entstehen, die eine große Rolle für die Klimaänderungen in den letzten Jahrzehnten spielen. Dieses Grundlagenwissen ist notwendig, um die noch mit vielen Unsicherheiten behafteten Klimamodelle zu verbessern.

... mehr zu:
»Klimamodell »Ozonchemie

Die atmosphärische Strömung folgt bevorzugten Mustern, wobei das wichtigste Muster für die Nordhalbkugel die Arktische Oszillation ist. Dabei handelt es sich um eine großräumige Schwingung der Atmosphäre, die durch entgegengesetzte Luftdruckanomalien in der zentralen Arktis und in Teilen der mittleren und subtropischen Breiten gekennzeichnet ist und sich in Jahrzehnte dauernden Schwingungen mal stärker und mal schwächer ausprägt. In der positiven Phase, die seit etwa 1970 vorherrscht, ist der winterliche Polarwirbel sehr stabil und der Austausch von Luftmassen zwischen mittleren und hohen Breiten ist eingeschränkt. In den mittleren Breiten treiben starke Westwinde im Winter warme Atlantikluft nach Nord- und Mitteleuropa und Sibirien. In der negativen Phase der Arktischen Oszillation kann die kalte Polarluft weiter nach Süden vordringen und beschert Europa strenge Winter.

Bislang werden in komplexen, globalen, gekoppelten Atmosphären-Ozean-Klimamodellen die gegenseitigen Wechselwirkungen zwischen chemischen Prozessen in der Stratosphäre und der Zirkulation in der Tropo- und Stratosphäre (0 bis 10 Kilometer Höhe bzw. 10 bis circa 50 Kilometer Höhe) nicht berücksichtigt. Die Wissenschaftler des Alfred-Wegener-Institutes haben nun erstmals in ein Atmosphären-Ozean-Klimamodell ein Modul der stratosphärischen Ozonchemie eingefügt. Durch einen Vergleich von Simulationen des Standardmodells und des um die Ozonchemie ergänzten neuen Modells konnten die Wissenschaftler zeigen, dass die Ozonchemie einen deutlichen Einfluss auf die Arktische Oszillation hat. Änderungen der atmosphärischen Strömung und der Temperaturverteilung führen zu einer Verstärkung der winterlichen negativen Phase der Arktischen Oszillation.

"Unsere Untersuchungen leisten einen entscheidenden Beitrag zur Reduzierung der Unsicherheiten bei der Simulation des gegenwärtigen Klimas. Die heutigen Klimamodelle sind, anders als oft behauptet wird, noch mit zahlreichen Unsicherheiten behaftet. Erst wenn wir die grundlegenden Prozesse in der Arktis verstehen, können wir diese Fehler quantifizieren und ausmerzen", sagte Dr. Sascha Brand, Hauptautor der vorgestellten Studie des Alfred-Wegener-Instituts. Die Ergebnisse lassen erwarten, dass die Berücksichtigung der Wechselwirkung zwischen atmosphärischer Strömung und stratosphärischer Ozonchemie sich auch in Simulationen der zukünftigen Klimaentwicklung auf die Stabilität des Polarwirbels auswirkt und deshalb unbedingt in Klimamodelle einbezogen werden muss. In einem Folgeprojekt soll das neue Modell für Berechnungen der zukünftigen Klimaentwicklung eingesetzt werden.

Brand, S., K. Dethloff, and D. Handorf (2008), Tropospheric circulation sensitivity to an interactive stratospheric ozone, Geophys. Res. Lett., doi:10.1029/2007/GL032152

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der mittleren und hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der fünfzehn Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Margarete Pauls | idw
Weitere Informationen:
http://www.awi.de/

Weitere Berichte zu: Klimamodell Ozonchemie

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen
18.08.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Klimawandel: Bäume binden im Alter große Mengen Kohlenstoff
17.08.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik