Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf den richtigen Winkel kommt es an

19.05.2016

Eine wichtige Eigenschaft von Oberflächen ist ihre Benetzbarkeit durch Flüssigkeiten. Makroskopische Objekte wie Pflanzen sind im Zusammenhang mit der Kapillarität auf besonders gute Benetzbarkeit angewiesen, die Flugeigenschaft von Vögeln ist wiederum von möglichst geringer Benetzung der Flügel abhängig. Als Faustregel gilt: Gute Benetzbarkeit entspricht kleinen Kontaktwinkeln zwischen Oberfläche und Flüssigkeitstropfen. Diese Effekte machen sich vorwiegend bei der Benetzung von Nanoteilchen bemerkbar, was z.B. bei der Wolkenentstehung eine Rolle spielt. Forschern der Universität Wien ist es nun erstmals gelungen, Kontaktwinkel an Nanoteilchen direkt zu bestimmen.

Makroskopische Kontaktwinkel können mittels mehrerer unterschiedlicher Methoden gemessen werden. Dagegen gibt es kaum Informationen über Kontaktwinkel im mikroskopischen Bereich.


Hier zu sehen: Das Nanoteilchen mit Radius r_p und den Wassercluster (grau schattiert, Radius r*). Theta bezeichnet den Kontaktwinkel, Phi repräsentiert die Krümmung der Kontaktlinie.

Copyright Universität Wien


Das Team um Paul Winkler konnte nun die Eigenschaften der Kontaktlinie und den (mikroskopischen) Kontaktwinkel aus Messungen heterogener Nukleation an kugelförmigen Nanopartikeln direkt bestimmen.

Copyright Universität Wien

Bei Tröpfchen in annähernd molekularem Größenbereich weisen die Randlinien der Tröpfchen (Kontaktlinien) derart hohe Krümmungen auf, dass durch molekulare Wechselwirkungen eine zusätzliche Kraft (entsprechend einer zugehörigen Linienspannung) auftritt, die zu Verzerrungen der Kontaktlinie führen kann. Dadurch können sich im mikroskopischen Bereich wesentliche Veränderungen von Kontaktwinkeln und Benetzungseigenschaften ergeben.

Ein Team um Paul Winkler von der Fakultät für Physik der Universität Wien und des Brookhaven National Laboratory, NY, U.S.A., konnte nun die Eigenschaften der Kontaktlinie und den (mikroskopischen) Kontaktwinkel aus Messungen heterogener Nukleation an kugelförmigen Nanopartikeln direkt bestimmen.

Die Methode beruht auf der Bestimmung des Durchmessers des Nanopartikels, sowie des Krümmungsradius und des Volumens des flüssigen Clusters auf der Oberfläche des Nanopartikels. Die Ergebnisse sind nicht abhängig von einer speziellen Nukleationstheorie.

Die (geodätische) Krümmung der Kontaktlinie wird mit Hilfe desselben Formalismus ermittelt, der auch in der allgemeinen Relativitätstheorie eingesetzt wird. Die Ergebnisse erlauben nun eine quantitative Beschreibung der heterogenen Nukleation an Nanoteilchen, wie sie unter anderem auch bei der Wolkenentstehung auftritt.

Konkret wurden mittels des SANC-Messsystems Nukleationswahrscheinlichkeiten für heterogene Nukleation von Wasserdampf auf der Oberfläche annähernd kugelförmiger Silberpartikel gemessen. SANC (Size Analysing Nuclei Counter) ist ein an der Aerosolphysik und Umweltphysik der Universität Wien entwickeltes prozessgesteuertes Messsystem.

Ausgehend von einem präzise kontrollierten nahezu dampfgesättigten Aerosol wird eine räumlich homogene Dampfübersättigung erzielt, wobei Sättigungsverhältnis und Temperatur genau definiert sind. Die an den Aerosolpartikeln entstehenden Flüssigkeitströpfchen wachsen durch Kondensation des übersättigten Dampfes an.

Durchmesser und Anzahl der Tröpfchen werden zu mehreren Zeiten während des Kondensationsvorganges berührungsfrei gemessen. Das SANC-System erlaubt unter anderem die Messung von Tröpfchenwachstumsraten und heterogenen Nukleationswahrscheinlichkeiten bei definierten thermodynamischen Bedingungen.

Publikation in "Scientific Reports"

Winkler et al., "Direct Determination of three-phase contact line properties on nearly molecular scale", Scientific Reports, online 17. Mai 2016.
http://www.nature.com/articles/srep26111
DOI: 10.1038/srep26111

Wissenschaftlicher Kontakt
Ass.-Prof. Dr. Paul Winkler
Aerosolphysik und Umweltphysik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-734 03
M +43-664-73925907
paul.winkler@univie.ac.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Offen für Neues. Seit 1365.
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.600 MitarbeiterInnen, davon 6.800 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 93.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at

Stephan Brodicky | Universität Wien

Weitere Berichte zu: Aerosolphysik Krümmung Nukleation Oberfläche Silberpartikel Winkel

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften