Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

flora robotica: Roboterschwärme als Baumeister nachhaltiger Pflanzenarchitektur

09.11.2016

Deutschland, Dänemark, Österreich und Polen an 3,6 Mio. Euro-Projekt beteiligt

Die Kommunikation zwischen Menschen, Pflanzen und Maschinen ermöglichen und dabei Städte neugestalten: Seit 2015 forschen Wissenschaftlerinnen und Wissenschaftler aus vier Nationen unter der Leitung der Universität Paderborn im Projekt „flora robotica“ an intelligenten Pflanzen.


Vision des Forschungsprojektes „flora robotica“: Biohybride Gesellschaften aus Pflanzen und Robotern sollen künftig Lebensraum gestalten.

Universität Paderborn


Pflanzen und Roboter sollen im Projekt „flora robotica“ künftig untereinander und mit dem Menschen kommunizieren können.

Universität Paderborn

An dem von der EU geförderten Forschungsprojekt sind Informatiker, Robotiker, Zoologen, Zellbiologen, Mechatroniker und Architekten aus Deutschland, Dänemark, Österreich und Polen beteiligt. Insgesamt wird das Projekt mit rund 3,6 Mio. Euro gefördert.

„Diese „intelligenten“ Pflanzen sollen künftig – von Roboterschwärmen angeleitet – unsere Städte architektonisch beleben: Von der kontrolliert begrünten Wand bis hin zu ganzen Häusern aus lebender Biomasse“, erläutert Prof. Dr. Heiko Hamann vom Heinz Nixdorf Institut der Universität Paderborn das Projekt. Um dies zu erreichen, entwickelt das internationale Forscherteam sogenannte „biohybride Gesellschaften“ aus Roboterschwärmen und Pflanzen. Neuartige im Projekt entwickelte Technologien machen es erstmals möglich, dass Menschen, Pflanzen und Roboter miteinander auf hohem Niveau kommunizieren und gemeinsame Ziele erreichen können.

Eine der großen Herausforderungen im Forschungsprojekt „flora robotica” ist der Aufbau eines Kommunikationsnetzwerkes zwischen Pflanzen, Menschen und Robotern. Dazu haben die Wissenschaftler völlig neuartige Kommunikationskanäle entwickelt, die sowohl das kurzfristige wie auch das langfristige Wachstum der Pflanzen beeinflussen können: „Die Roboter können den Pflanzen mitteilen, in welche Richtung sie wachsen sollen und die Pflanzen können den Robotern bekannt geben, was sie dafür brauchen, z. B. Wasser oder Licht“, so Hamann.

Roboter als Dolmetscher zwischen Mensch- und Pflanzenwelt

Die Roboter kommunizieren aber nicht nur mit den Pflanzen, sie werden auch zu Vermittlern und Dolmetschern zwischen der Menschen- und der Pflanzenwelt. „Wir Menschen können somit erstmals strukturiert, gezielt und geplant an einer völlig neuartigen Pflanzenarchitektur arbeiten“, verdeutlicht Prof. Dr. Heiko Hamann. Forscher erhalten erstmals durch die Roboter in „Echtzeit” Informationen über den Zustand der Pflanzen, wie z. B. Nährstoffmangel. Sie können so darauf reagieren, bevor negative Auswirkungen auf die Pflanze entstehen können. Umgekehrt können auch die Forscher über die Roboter Pflanzen Informationen zukommen lassen. Etwa ob die Pflanze gerade die jeweilige gewünschte architektonische Form bildet oder ihr Wachstum anders ausrichten muss.

Intelligente Pflanzen bauen nachhaltige lebenswerte Umwelten

Bereits jetzt werden Roboter immer wieder eingesetzt, um Pflanzenwachstum zu beeinflussen, etwa in automatisierten Gewächshäusern. In flora robotica gehen die Wissenschaftler einen entscheidenden Schritt weiter: Ihr Ziel ist es, das Pflanzenwachstum durchgehend zu beeinflussen und auf diese Weise innovative neue architektonische Gebilde entstehen zu lassen. Die Roboter werden zu einer Art „Baumeister“ einer völlig neuartigen Pflanzenarchitektur. Die intelligenten Pflanzen sollen künftig dabei helfen, nachhaltige Städte und Lebenswelten aufzubauen, von “lebendigen Mauern” über Möbel bis hin zu ganzen Häusern. Im Projekt flora robotica nimmt aber auch architektonische Ästhetik einen wichtigen Platz ein und es entstehen neue, sich permanent ändernde, ressourcenschonende, architektonische Systeme.

Technologie, die „das Sprechen“ mit Pflanzen möglich macht

Technisch ermöglicht die Kombination einer Vielzahl von Sensoren die Kommunikation zwischen Robotern und Pflanzen. Diese Sensoren funktionieren auf der Basis von verfügbarer Technologie, wie einfachen Abstandssensoren und anderen optischen Sensoren. Zusätzlich hat das Forscherteam aber auch neue Technologien entwickelt: wie Biomassesensoren, die auf der Verzerrung von elektromagnetischen Feldern basieren, oder auch Transpirationssensoren und Sensoren, die den Saftfluss (Xylemsaftfluss) messen.

Manche der symbiotischen Roboter sind stationär, andere wiederum bewegen sich langsam fort, um mit dem Pflanzenwachstum Schritt zu halten. Schnell hingegen funktionieren die Kontrollmechanismen der Roboter, welche die Pflanzen durch Hochintensitäts-LEDs und Vibrationsmotoren beeinflussen. Weiterhin benutzen die Forscher blaues Licht, um die Pflanzen über sogenannten „Phototropismus” zu steuern, indem ihre Wachstumsspitze von der Lichtquelle angelockt wird. Eingesetzt wird aber auch Licht im sogenannten „far-red”-Bereich (zwischen dem Spektrum von sichtbarem und infrarotem Licht), um auf Pflanzen gezielt abstoßend zu wirken. Gleichzeitig werden Vibrationsmotoren eingesetzt, um das Wachstum auf bestimmte Teilbereiche zu beschränken.

In den bisherigen Experimenten wurde das Zusammenspiel zwischen Robotern und einer Vielzahl von verschiedenen Pflanzenarten, wie zum Beispiel Bambus, Bohnen, Bananen oder Tomaten bereits erfolgreich getestet.

Kontakt: Prof. Dr. Heiko Hamann, Heinz Nixdorf Institut, Institut für Informatik, Schwarmintelligenz, E-Mail: heiko.hamann@upb.de, Tel.: 05251 / 60-6465

Weitere Informationen:

http://www.florarobotica.eu/
https://youtu.be/Byo55asQUwM
https://twitter.com/florarobotica
https://www.instagram.com/florarobotica/
https://www.youtube.com/channel/UCkQPj4HB-1IxZJ9AXB-cVxA

Vanessa Dreibrodt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro
21.02.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Eva Luise Köhler Forschungspreis für Seltene Erkrankungen 2018 für Tübinger Neurowissenschaftler
21.02.2018 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics