Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was Perowskit-Solarzellen so effizient macht

04.04.2018

Solarzellen mit Wirkungsgraden über 20 Prozent bei kostengünstiger Herstellung – Perowskite machen es möglich. Nun haben Forscher am Karlsruher Institut für Technologie (KIT) grundlegende Einblicke in die Funktion von Perowskit-Solarzellen gewonnen. Sie zeigten, dass bei der Absorption von Licht gebundene Elektron-Loch-Paare entstehen können. Diese lassen sich jedoch leicht genug trennen, sodass Strom fließen kann. Außerdem verstärken sie die Absorption. Über ihre Arbeit berichten die Wissenschaftler in der Zeitschrift Applied Physics Letters. (DOI: 10.1063/1.5017943)

Perowskite gehören zu den vielversprechendsten Materialien für Solarzellen: Mit ihnen lassen sich hoher Wirkungsgrad und kostengünstige Herstellung vereinbaren. Das Interesse der Photovoltaik-Forschung fokussiert sich auf Halid-Perowskite, die sowohl organische als auch anorganische Verbindungen enthalten und daher als hybride Halbleiter gelten.


Perowskit-Solarzellen wandeln einen hohen Anteil des einfallenden Lichts direkt in nutzbaren Strom um.

Abbildung: Fabian Ruf/Scilight

„Diese Perowskite haben in weniger als einem Jahrzehnt eine bemerkenswerte Entwicklung durchlaufen. Inzwischen wandeln sie in Solarzellen über 20 Prozent des einfallenden Lichts direkt in nutzbaren Strom um“, berichtet der Photovoltaik-Experte Dr. Michael Hetterich vom KIT, der die gemeinsamen Aktivitäten des KIT mit dem Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) koordiniert.

Das enorme Potenzial der Perowskite zeigt sich auch in Tandem-Solarzellen, die eine semitransparente obere Perowskit-Zelle mit einer unteren Zelle aus Silizium oder Kupfer-Indium-Gallium-Diselenid (CIGS) kombinieren. Dadurch lässt sich das Spektrum des Sonnenlichts optimal ausnutzen.

Die Forschung steht derzeit vor den Herausforderungen, die langfristige Stabilität der Perowskit-Solarzellen zu erhöhen sowie das in ihnen enthaltene Schwermetall Blei durch umweltverträglichere Elemente zu ersetzen. Dazu bedarf es tieferer Einblicke in die Struktur und Funktion der Perowskit-Schichten.

Forscher am Institut für Angewandte Physik und am Lichttechnischen Institut des KIT sowie am ZSW und der Ludwig-Maximilians-Universität München untersuchen in dem vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Verbundprojekts CISOVSKIT (Entwicklung hocheffizienter Hybrid-Solarzellen aus CIGS- und Perowskitmaterialien) die Funktion von auf Perowskiten basierenden Dünnschicht-Tandem-Solarzellen. Dabei haben sie nun neue Erkenntnisse zur physikalischen Natur der optischen Übergänge gewonnen. Die Wissenschaftler berichten darüber in einem „Featured Article“ der Zeitschrift Applied Physics Letters.

Optische Übergänge sind Änderungen des Energiezustands von Elektronen in einem Material durch Emission (Abgabe) oder Absorption (Aufnahme) von Photonen, das heißt Lichtteilchen. Wie Fabian Ruf in seiner Doktorarbeit in der Arbeitsgruppe von Professor Heinz Kalt am KIT nun gezeigt hat, ist in Solarzellen mit dem Absorbermaterial Methylammonium-Bleijodid, dem klassischen Halid-Perowskit, der grundlegende optische Übergang exzitonischer Natur.

Das bedeutet, dass in den Solarzellen nach der Absorption von Lichtteilchen Exzitonen entstehen können – das sind gebundene Elektron-Loch-Paare, welche die opto-elektronischen Eigenschaften wesentlich bestimmen. Dabei muss die Bindungsenergie der Exzitonen überwunden werden, um freie Ladungsträger zu erhalten und Strom fließen zu lassen.

Fabian Ruf untersuchte mittels temperaturabhängiger Elektroabsorptionsspektroskopie semitransparente Solarzellen mit Methylammonium-Bleijodid-Absorber, die von Moritz Schultes am ZSW mit einem nasschemischen Ansatz hergestellt wurden. Die Ergebnisse lassen auf exzitonische Übergänge über den gesamten untersuchten Temperaturbereich schließen – von zehn Kelvin (minus 263 Grad Celsius) bis zu Raumtemperatur. Je nach Kristallstruktur des Perowskits, die sich mit wechselnder Temperatur ändert, beträgt die Exzitonen-Bindungsenergie circa 26 beziehungsweise 19 Millielektronenvolt.

„Die Bindungsenergie ist damit klein genug, um bei Raumtemperatur eine ausreichende thermische Trennung der Ladungsträger zu ermöglichen“, erklärt Michael Hetterich. „Zusätzlich kommt es durch die exzitonischen Effekte zu einer verstärkten Absorption. Beides zusammen ermöglicht einen effizienten Betrieb der Perowskit-Solarzelle.“

Das American Institute of Physics (AIP) wählte die Arbeit zur Präsentation auf seiner Website „Scilight“ aus: https://aip.scitation.org/doi/10.1063/1.5026230

Originalpublikation:
Fabian Ruf, Alice Magin, Moritz Schultes, Erik Ahlswede, Heinz Kalt, and Michael Hetterich: Excitonic nature of optical transitions in electroabsorption spectra of perovskite solar cells. Applied Physics Letters, 2018. DOI: 10.1063/1.5017943

Weitere Materialien:
Originalpublikation: https://aip.scitation.org/doi/abs/10.1063/1.5017943

Weiterer Pressekontakt:
Margarete Lehné, stellv. Pressesprecherin, Tel.: +49 721 608-21157, E-Mail: margarete.lehne@kit.edu

Details zum KIT-Zentrum Energie: http://www.energie.kit.edu

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 26 000 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen.

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.sek.kit.edu/presse.php

Weitere Informationen:

https://aip.scitation.org/doi/10.1063/1.5026230
https://aip.scitation.org/doi/abs/10.1063/1.5017943
http://www.energie.kit.edu
http://www.sek.kit.edu/presse.php

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Netzspannung und Lastströme live und präzise im Blick
24.04.2018 | Karlsruher Institut für Technologie

nachricht Seilzugsensor MH60 – erfolgreicher Einsatz in rauer Umgebung
20.04.2018 | WayCon Positionsmesstechnik GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von der Genexpression zur Mikrostruktur des Gehirns

24.04.2018 | Biowissenschaften Chemie

Bestrahlungserfolg bei Hirntumoren lässt sich mit kombinierter PET/MRT vorhersagen

24.04.2018 | Medizintechnik

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics