FAU-Forscher entwickeln neues Materialsystem für effiziente und langlebige Solarzellen

Solarpanel Bild: FAU / Veer

Da alle Prozesse bei niedriger Temperatur und aus der Lösung stattfinden, hat diese Erfindung das Potential, die gedruckte Solartechnologie revolutionieren zu können. Ihre Forschungsergebnisse haben die Wissenschaftler im renommierten Fachmagazin Science veröffentlicht. (doi: 10.1126/science.aao5561)

Perovskit gilt als besonders gut geeigneter Halbleiter, um Sonnenlicht in Strom umzuwandeln. Das Material lässt sich zum Beispiel besonders leicht verarbeiten. Während Standardhalbleiter wie Silizium entweder aus der Schmelze gezogen oder in Hochvakuumanlagen abgeschieden werden, kann Perovskit bei normaler Raumtemperatur aus der Lösung aufgebracht werden, zum Beispiel mit Druck- und Beschichtungsverfahren.

Dabei entstehen Solarzellen dünn wie Klarsichthüllen und extrem biegsam. Sie können lichtdurchlässig und in verschiedenen Farben hergestellt werden und sie lassen sich kostengünstig sowie in großer Geschwindigkeit produzieren. Durch diese Besonderheiten eignen sie sich – anders als kristalline Solarzellen – auch für den Einsatz als Gestaltungselemente in der Architektur, beispielsweise an Fassaden oder in Fenstern.

Mit einer dünnen Schicht aus Tantal-Wolframoxid-Nanopartikel ist es den Wissenschaftlern der FAU nun gelungen, die Effizienz des Materials noch weiter zu erhöhen – auf einen Wert von sogar 21,2 Prozent. Diesen Wirkungsgrad hat die Forschung bisher für diese Bauelementarchitektur noch nicht erreicht. „Das präzise Verständnis der Prozesse an der Grenzfläche des Perovskits half uns zu diesem Durchbruch“, sagt Professor Brabec. „Die zukünftigen Herausforderungen sind aber noch deutlich spannender.“

In der „Solarfabrik der Zukunft“ des Zentrums für Angewandte Energieforschung (ZAE) Bayern entwickelt das Team um Christoph Brabec bereits Rolle zu Rolle Druckprozesse, mit denen die Perovskit-Technologie zunächst in den Megawatt-Maßstab skaliert werden soll.

Das extrem zukunftsträchtige Forschungsfeld soll auch im zur Vollantragstellung eingeladenen FAU-Exzellenzcluster-Projekt „Engineering of Functional Material Interfaces“ (FUMIN) weiterentwickelt werden.

In nur wenigen Jahren wollen die Forscher der FAU und des ZAE gedruckte Solarmodule mit einer vergleichbaren Effizienz wie Silizium demonstrieren – großflächig, flexibel und extrem kostengünstig.

Informationen für die Medien:
Prof. Dr. Christoph J. Brabec
Tel.: 09131 85-25426
christoph.brabec@fau.de

Media Contact

Dr. Susanne Langer idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.fau.de/

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer