Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

FAU-Forscher entwickeln neues Materialsystem für effiziente und langlebige Solarzellen

10.11.2017

Das Mineral Perovskit gilt als Wunderhalbleiter in der Optoelektronik und vor allem in der Solartechnologie. Hoch effizient, doch bisher leider kaum alltagstauglich aufgrund inkompatibler Grenzflächen. Das wollen Forscher der Friedrich-Alexander-Universität Erlangen-Nürnberg um den Materialwissenschaftler Prof. Dr. Christoph Brabec ändern. Sie haben ein Materialsystem entwickelt, das die Herstellung von effizienten und langlebigen Solarzellen auf der Basis von Perovskiten erlaubt. Mit Hilfe von besonderen Nanopartikeln konnte das FAU-Team ein generisches Verfahren entwickeln, mit dem sich die Grenzschichten in der Solarzelle sehr präzise dotieren lassen.

Da alle Prozesse bei niedriger Temperatur und aus der Lösung stattfinden, hat diese Erfindung das Potential, die gedruckte Solartechnologie revolutionieren zu können. Ihre Forschungsergebnisse haben die Wissenschaftler im renommierten Fachmagazin Science veröffentlicht. (doi: 10.1126/science.aao5561)


Solarpanel

Bild: FAU / Veer

Perovskit gilt als besonders gut geeigneter Halbleiter, um Sonnenlicht in Strom umzuwandeln. Das Material lässt sich zum Beispiel besonders leicht verarbeiten. Während Standardhalbleiter wie Silizium entweder aus der Schmelze gezogen oder in Hochvakuumanlagen abgeschieden werden, kann Perovskit bei normaler Raumtemperatur aus der Lösung aufgebracht werden, zum Beispiel mit Druck- und Beschichtungsverfahren.

Dabei entstehen Solarzellen dünn wie Klarsichthüllen und extrem biegsam. Sie können lichtdurchlässig und in verschiedenen Farben hergestellt werden und sie lassen sich kostengünstig sowie in großer Geschwindigkeit produzieren. Durch diese Besonderheiten eignen sie sich – anders als kristalline Solarzellen – auch für den Einsatz als Gestaltungselemente in der Architektur, beispielsweise an Fassaden oder in Fenstern.

Mit einer dünnen Schicht aus Tantal-Wolframoxid-Nanopartikel ist es den Wissenschaftlern der FAU nun gelungen, die Effizienz des Materials noch weiter zu erhöhen – auf einen Wert von sogar 21,2 Prozent. Diesen Wirkungsgrad hat die Forschung bisher für diese Bauelementarchitektur noch nicht erreicht. „Das präzise Verständnis der Prozesse an der Grenzfläche des Perovskits half uns zu diesem Durchbruch“, sagt Professor Brabec. „Die zukünftigen Herausforderungen sind aber noch deutlich spannender.“

In der „Solarfabrik der Zukunft“ des Zentrums für Angewandte Energieforschung (ZAE) Bayern entwickelt das Team um Christoph Brabec bereits Rolle zu Rolle Druckprozesse, mit denen die Perovskit-Technologie zunächst in den Megawatt-Maßstab skaliert werden soll.

Das extrem zukunftsträchtige Forschungsfeld soll auch im zur Vollantragstellung eingeladenen FAU-Exzellenzcluster-Projekt „Engineering of Functional Material Interfaces“ (FUMIN) weiterentwickelt werden.

In nur wenigen Jahren wollen die Forscher der FAU und des ZAE gedruckte Solarmodule mit einer vergleichbaren Effizienz wie Silizium demonstrieren – großflächig, flexibel und extrem kostengünstig.

Informationen für die Medien:
Prof. Dr. Christoph J. Brabec
Tel.: 09131 85-25426
christoph.brabec@fau.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fau.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Meilenstein in der Kreissägetechnologie
11.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Solarenergie: Defekte in Kesterit-Halbleitern mit Neutronen untersucht
07.12.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einmal durchleuchtet – dreifacher Informationsgewinn

11.12.2017 | Physik Astronomie

Kaskadennutzung auch bei Holz positiv

11.12.2017 | Agrar- Forstwissenschaften

Meilenstein in der Kreissägetechnologie

11.12.2017 | Energie und Elektrotechnik