Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie heiße Quellen der Tiefsee das Klima beeinflussen - Publikation in "Nature Geoscience"

01.10.2015

Wie schafft es die Erde, das Klima stabil zu halten? Der Antwort auf diese Frage ist ein internationales Forscherteam um den Geoökologen Prof. Dr. Thorsten Dittmar vom Institut für Chemie und Biologie des Meeres (ICBM) der Universität Oldenburg ein Stück näher gekommen. Die WissenschaftlerInnen aus zehn verschiedenen Instituten in Europa und den USA haben entdeckt, dass der Vulkanismus in der Tiefsee eine entscheidende Rolle für das langfristige Klima spielt. Die Ergebnisse sind in der Oktoberausgabe der Wissenschaftszeitschrift „Nature Geoscience“ veröffentlicht worden.

Seit jeher tragen die Ozeane viel dazu bei, dass das Klima auf der Erde stabil bleibt. Sie enthalten eine Menge Kohlenstoff, wesentlich mehr als im Kohlenstoffdioxid der Atmosphäre gebunden ist. Das Meer speichert den Kohlenstoff unter anderem im sogenannten gelösten organischen Material, das nach der englischen Übersetzung („dissolved organic matter“) mit DOM abgekürzt wird. Ein Großteil des DOM überdauert viele tausend Jahre lang im Meerwasser. Es fungiert somit als ein großer Langzeit-Kohlenstoffspeicher.


Aus diesem „Schwarzen Raucher“ am Mittelatlantischen Rücken in fast dreitausend Metern Wassertiefe haben die Wissenschaftler einen Teil der Proben entnommen.

MARUM − Zentrum für Marine Umweltwissenschaften, Universität Bremen

In der aktuellen Studie wollten die ForscherInnen um den Wissenschaftler Dr. Jeffrey Hawkes vom ICBM herausfinden, was mit dem DOM passiert, wenn es in die heißen Quellen der Tiefsee gelangt. Mithilfe von Tauchrobotern sammelten sie Proben aus mehreren Tausend Metern Tiefe an verschiedenen Stellen im Atlantik und Pazifik.

In der Tiefsee ist nicht nur der Druck viel höher als an der Wasseroberfläche, es gibt am Meeresboden außerdem heiße Quellen und Vulkane, in denen sich das Meerwasser auf über 400 Grad Celsius aufheizt. Die genaue Frage der Forscher: Wird durch die Hitze neues DOM aufgebaut oder das vorhandene zerstört?

Die klare Antwort nach sechs Jahren Forschungsarbeit: Es wird zerstört. Selbst die stabilsten Verbindungen haben bei 400 Grad keine Chance mehr. Und: Das DOM hat dadurch eine begrenzte Lebensdauer. Sie liegt bei maximal 40 Millionen Jahren. Denn innerhalb dieser Zeit hat der gesamte Ozean einmal die geothermalen Quellen durchlaufen.

Damit haben die ForscherInnen eine Erklärung dafür gefunden, wie das Meer es schafft, den Anteil an Kohlenstoff auch über sehr lange Zeiträume im Gleichgewicht zu halten. Denn was es aufnimmt, muss es wieder loswerden - eine wichtige Voraussetzung für ein stabiles Klima.

Dass mit der Zerstörung des DOM in der Tiefsee ein Kohlenstoff- und damit letztlich auch ein CO2-Speicher verloren geht, halten die ForscherInnen trotz der aktuellen Diskussion um den Treibhauseffekt für unbedenklich, denn die untersuchten Prozesse sind nur über sehr lange Zeiträume von Jahrmillionen von Bedeutung. „Das CO2 ist an sich nichts Schlechtes.

Schlecht sind nur die schnellen Veränderungen im Augenblick“, erklärt Dittmar. Tatsächlich sei das CO2 sogar lebenswichtig, denn ohne könnten Pflanzen, Tiere und Menschen gar nicht existieren. Auf dem Mars gebe es beispielsweise sehr wenig CO2, was ihn unbewohnbar mache.

Die Venus habe zu viel des Treibhausgases. Auf der Erde dagegen ist der CO2-Anteil und das Klima für Leben optimal. Die neu entdeckte Rolle der heißen Quellen in der Tiefsee ist einer der Faktoren, die auf den CO2-Gehalt und das Klima über sehr lange Zeiträume einwirken, aber auf die aktuellen Klimaveränderungen keinen Einfluss haben.

An der Studie beteiligt waren neben dem ICBM folgende Institute: MARUM − Zentrum für Marine Umweltwissenschaften an der Universität Bremen; Max-Planck-Institut für Marine Mikrobiologie Bremen; Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung Bremerhaven; GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel; Jacobs University Bremen; Skidaway Institute of Oceanography, USA; University of Washington, USA; University of Southampton, UK; Université de Toulouse, Frankreich.

„Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation” by Jeffrey A. Hawkes, Pamela E. Rossel, Aron Stubbins, David Butterfield, Douglas P. Connelly, Eric P. Achterberg, Andrea Koschinsky, Valérie Chavagnac, Christian T. Hansen, Wolfgang Bach and Thorsten Dittmar, Nature Geoscience, doi 10.1038/NGEO2543.

Weitere Informationen:

http://www.icbm.de/marine-geochemie/

Dr. Corinna Dahm-Brey | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: CO2 Geoscience Helmholtz-Zentrum ICBM Meerwasser Tiefsee klima

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie