Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wichtiger Baustein für die molekulare organische Elektronik erstmals charakterisiert

09.09.2014

Internationaler Forschergruppe der Justus-Liebig Universität Gießen und der Stanford University (USA) gelingt die Darstellung einer molekularen Diode, die nur aus Kohlenstoff und Wasserstoff besteht

Weiterer Durchbruch in der „organischen molekularen Elektronik“: Die erstmalige Darstellung und Einzelmolekül-Charakterisierung einer „organischen Diode“ aus natürlichen Materialien ist einer Gruppe von Forscherinnen und Forschern in der renommierten Stanford University in den USA und der Gießener Arbeitsgruppe um Prof. Dr. Peter R. Schreiner, Institut für Organische Chemie der Justus-Liebig-Universität Gießen (JLU) gelungen. Ein entsprechender Bericht ist am 9. September 2014 in dem angesehenen Journal „Nature Communications“ (2014, 5, DOI: 10.1038/ncomms5877) erschienen.


Schematische Darstellung der Fulleren-Diamantoid-Diode

Abbildung: Prof. Peter R. Schreiner

Dieser nur aus Kohlenstoff und Wasserstoff bestehende Gleichrichter ist ein fundamental wichtiger Baustein für die sich rasant entwickelnde „organische molekulare Elektronik“. Benötigt werden immer kleinere, leichtere, flexible und vor allem Schwermetall-freie elektronische Hochleistungsbausteine für die Halbleiterindustrie.

Der jetzt charakterisierte neuartige Halbleiter besteht aus einem Nanodiamantmolekül („Diamantoid“) und einem Fulleren, das die kugelige Struktur eines Fußballs aus 60 Nahtkreuzungen besitzt, an denen Kohlenstoffatome sitzen. Beide Strukturelemente kommen natürlich vor und sind Strukturvarianten des Kohlenstoffs (Graphit ist die meist verbreitete und unter Normalbedingungen stabilste Form).

Da Nanodiamanten Elektronenemitter und Fullerene Elektronenakzeptoren sind, werden hier also zwei grundlegend verschiedene elektronische Eigenschaften miteinander verknüpft, die für den Aufbau eines Gleichrichters notwendig sind.

Nach der chemischen Synthese haben die Wissenschaftler die Moleküle auf Goldoberflächen aufgebracht und mittels Rastertunnelmikroskopie und -spektroskopie bei tiefer Temperatur eingehend charakterisiert. Dabei ist es gelungen, die elektrischen Ströme der Einzelmoleküle mit und entgegen der Molekülachse zu vermessen, um das Gleichrichteverhalten zu ermitteln.

Hier zeigt sich, dass der Stromfluss in die eine Richtung etwa zwanzigmal intensiver ist als in die Gegenrichtung. Das beschriebene System eröffnet somit den Zugang zu einer völlig neuen Halbleiterklasse, die eine noch weitere Miniaturisierung zulässt und dabei flexible sowie nachhaltige elektronische Bauelemente für das Design von beispielsweise Computerchips ermöglicht.

Veröffentlichung
Unconventional molecule-resolved current rectification in diamondoid-fullerene hybrids
Jason C. Randel, Francis C. Niestemski, Andre´s R. Botello-Mendez, Warren Mar, Georges Ndabashimiye, Sorin Melinte, Jeremy E.P. Dahl, Robert M.K. Carlson, Ekaterina D. Butova, Andrey A. Fokin, Peter R. Schreiner, Jean-Christophe Charlier & Hari C. Manoharan
DOI: 10.1038/ncomms5877

Kontakt
Prof. Dr. Peter R. Schreiner

Institut für Organische Chemie der JLU Gießen
Heinrich-Buff-Ring 58, 35392 Gießen
Telefon: 0641 99-34300
E-Mail: prs@uni-giessen.de

Die 1607 gegründete Justus-Liebig-Universität Gießen (JLU) ist eine traditionsreiche Forschungsuniversität, die mehr als 26.500 Studierende anzieht. Neben einem breiten Lehrangebot – von den klassischen Naturwissenschaften über Rechts- und Wirtschaftswissenschaften, Gesellschafts- und Erziehungswissenschaften bis hin zu Sprach- und Kulturwissenschaf¬ten – bietet sie ein lebenswissenschaftliches Fächerspektrum, das nicht nur in Hessen einmalig ist: Human- und Veteri-närmedizin, Agrar-, Umwelt- und Ernährungswissenschaften sowie Lebensmittelchemie. Unter den großen Persönlich-keiten, die an der JLU geforscht und gelehrt haben, befindet sich eine Reihe von Nobelpreisträgern, unter anderem Wilhelm Conrad Röntgen (Nobelpreis für Physik 1901) und Wangari Maathai (Friedensnobelpreis 2004). Seit 2006 wird die JLU sowohl in der ersten als auch in der zweiten Förderlinie der Exzellenzinitiative gefördert (Excellence Cluster Cardio-Pulmonary System – ECCPS; International Graduate Centre for the Study of Culture – GCSC).

Weitere Informationen:

http://www.uni-giessen.de/cms/fbz/fb08/Inst/organische-chemie/agschreiner/resear...
http://www.uni-giessen.de/cms/fbz/fb08/Inst/organische-chemie/agschreiner
http://www.nature.com
http://www.nature.com/ncomms/2014/140909/ncomms5877/abs/ncomms5877.html

Charlotte Brückner-Ihl | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie