Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Nervenzellen miteinander reden – und Forscher zusehen

01.11.2016

Neurobiologen können die Aktivität von Nervenzellen im Mäusegehirn in Echtzeit verfolgen

Eine einzelne Nervenzelle kann weder Gedanken hervorbringen noch Verhalten steuern - Gehirnleistungen sind immer Teamwork. Aktive Nervenzellen bilden ausgedehnte Netzwerke und kommunizieren ständig miteinander. Wissenschaftler um Alipasha Vaziri am Wiener Forschungsinstitut für Molekulare Pathologie (IMP) und an der Rockefeller University (New York) entwickelten eine Technik, mit der sie diese Aktivität in dreidimensionalen Aufnahmen abbilden können. Im Journal Nature Methods beschreiben sie Experimente, bei denen sie die Signale tausender Neuronen im Gehirn aktiver Mäuse aufzeichnen und deren Kommunikation untereinander sichtbar machen konnten.


Leuchtende Neuronen signalisieren Aktivität

Alipasha Vaziri

„Unser Ziel ist es zu verstehen, wie weitläufig vernetzte Neuronen in Echtzeit miteinander ‚reden’ und wie diese Dynamik das Verhalten steuert“, sagt Alipasha Vaziri, der in Wien eine Arbeitsgruppe am IMP leitet und Associate Professor sowie Leiter des Laboratory of Neurotechnology & Biophysics an der Rockefeller University ist. „Mit neu erarbeiteten bildgebenden Verfahren, die auf der von uns entwickelten Technik des ‚light sculpting’ basieren, können wir die Aktivität eines Großteiles der Neuronen abbilden, die in der Gehirnrinde eine funktionale Einheit bilden. Damit sind wir unserem Ziel einen großen Schritt nähergekommen.“

Die technischen Herausforderungen an eine solche Methode sind enorm; schließlich müssen sehr kurzlebige Signale innerhalb einer Vielzahl von Zellen eingefangen werden, während gleichzeitig große Teile des Gehirngewebes beobachtet werden.

Das Team um Vaziri begann vor etwa sechs Jahren am IMP damit, die erforderlichen Technologien zu entwickeln. Zunächst gelang es den Forschern, mit speziellen lichtmikroskopischen Methoden die Aktivität aller 302 Nervenzellen eines Fadenwurm-Gehirns abzubilden. Im nächsten Schritt konnte das wesentlich komplexere Gehirn einer Zebrafisch-Larve mit rund 100 000 Neuronen dargestellt werden. Das Mausgehirn schließlich ist nicht nur wegen seiner 70 Millionen Nervenzellen besonders herausfordernd. Im Gegensatz zu den transparenten Strukturen bei Wurm und Fisch ist es zudem undurchsichtig.

Um die Aktivität der Maus-Neuronen sichtbar zu machen, mussten die Forscher zu einem genetischen Trick greifen. Sie veränderten die Zellen so, dass sie fluoreszierendes Licht aussandten, wann immer sie aktiv waren. Je stärker das Signal, desto intensiver leuchteten die Zellen.

Das Mikroskop-System, das die Forscher zum Aufspüren dieser Signale entwickelten, musste beinahe Unmögliches leisten. Robert Prevedel, der Erstautor der Studie, erläutert die Anforderungen: „Wir mussten in jeder Sekunde Millionen von Bildpunkten abtasten – einen nach dem anderen. Um die Fluoreszenz der Zellen innerhalb von 250 Nanosekunden (weniger als eine Millionstel Sekunde) anzuregen, mussten wir ein eigenes Laser-System konstruieren und das Licht innerhalb des Mikroskops auf eine Weise manipulieren, wie es bei normalen Mikroskopen nicht möglich wäre.“ Robert Prevedel übernahm diese Aufgabe als Postdoktorand im Labor von Alipasha Vaziri und leitet mittlerweile selbst eine Arbeitsgruppe am EMBL in Heidelberg.

Die Technik, mit der alle diese Anforderungen gemeistert wurden, nennt sich „light sculpting“. Dabei werden ultrakurze Laserpulse im Femtosekunden-Bereich (fs: ein Millionstel einer Milliardstel Sekunde) in ihre Farbanteile zerlegt. „Indem wir die Zerstreuung der Farben kontrollieren, können wir den Bereich , in dem das Licht fokussiert wird, modellieren. Bei unseren Experimenten ist er kugelförmig und etwas kleiner als die Nervenzellen selbst. Mit diesem Fokus scannen wir das Gehirn in hoher Geschwindigkeit und können so die Aktivität tausender Neuronen in Echtzeit und in drei Dimensionen beobachten“, beschreibt Prevedel die Methode.

Mittels light sculpting beobachtete das Team um Alipasha Vaziri die Gehirnaktivität von Mäusen, die sich frei auf einer rotierenden Scheibe bewegen konnten. Die Forscher konzentrierten sich auf jenen Bereich der Gehirnrinde, der für die Planung von Bewegung zuständig ist. Der untersuchte Gehirnausschnitt entsprach einer Gewebesäule von einem achtel Kubikmillimeter Größe und damit dem Großteil einer sogenannten ‚kortikalen Säule’. In Zukunft planen die Forscher, die Dynamik und Aktivität sämtlicher Zellen innerhalb einer solchen kortikalen Säule zu erfassen und zu analysieren, um zu verstehen, wie das Gehirn arbeitet.

„Der Erkenntnisgewinn in den Neurowissenschaften ist - wie in anderen Bereichen der Biologie - durch die verfügbaren Technologien begrenzt“, sagt Alipasha Vaziri. „Indem wir zunehmend schnellere, hochauflösende bildgebende Verfahren entwickeln, hoffen wir, dass wir den Horizont für die Gehirnforschung beträchtlich erweitern können.“

Originalpublikation
Prevedel et al.: Fast volumetric calcium imaging across multiple cortical layers using sculpted light. Nature Methods, Advance Online Publication, 31 October 2016.

Legende zum Video
Dreidimensionaler Ausschnitt aus dem Gehirn einer Maus. Die Nervenzellen leuchten auf, wenn sie einander Signale senden. Dieser Bereich der Gehirnrinde ist für die Planung von Bewegung zuständig. Die Nervenzellen wurden genetisch verändert und fluoreszieren hell, wenn sie Kalziumionen aufnehmen – ein Zeichen für Aktivität.

Kontakt IMP
Dr. Heidemarie Hurtl
IMP Communications
Research Institute of Molecular Pathology
+43 (0)1 79730 3625
hurtl@imp.ac.at

Kontakt Rockefeller University
Zach Veilleux
Communications and Public Affairs
The Rockefeller University
+1-212-327-8982 o
+1-347-978-4723 m
zveilleux@rockefeller.edu

Dr. Heidemarie Hurtl | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Dynamik Gehirnrinde IMP Molekulare Pathologie Nervenzellen Pathologie Zellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics