Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was Wassertropfen im Innersten zusammenhält

22.10.2015

Extrem detailreiche Einblicke in die Bindungseigenschaften von Wasser haben französische und österreichische Physiker gewonnen. Mit einer neu entwickelten Messmethode konnten sie die Energieverteilung in Nanotröpfchen direkt beobachten. Die Ergebnisse wurden nun in der Fachzeitschrift Angewandte Chemie, International Edition veröffentlicht.

Wasser bedeckt über zwei Drittel unserer Erde und bildet den Grundstoff für das Leben. Es ist allgegenwärtig und birgt doch immer noch viele Geheimnisse. Eine französische Forschungsgruppe um Michel Farizon von der Universität Lyon hat nun mit Unterstützung von Tilmann Märk von der Universität Innsbruck bahnbrechende, neue Erkenntnisse über die Bindungseigenschaften von Wasser veröffentlicht.

Grundlage dafür war eine neue experimentelle Anordnung, die es den Forschern ermöglichte, Verdampfungsvorgänge in winzigen Wassertröpfchen einzeln und im Detail zu beobachten. „Was hier in der Molekülchemie gemacht wurde, ist vergleichbar mit dem, was in den Teilchenbeschleunigern am CERN passiert “, sagt der Ionenphysiker Tilmann Märk.

„Im Labor werden ioniserte Kleinstwassertröpfchen von genau definierter Größe erzeugt, auf hohe Energie beschleunigt und mit anderen Teilchen zur Kollision gebracht. Dabei wird Energie auf die Wassermoleküle übertragen, und dies führt letztlich zu einem Zerfall dieser Tröpfchen.“ Die Gruppe um Michel Farizon war nun mittels eines neuartigen Massenspektrometers in der Lage, die einzelnen Ereignisse genau zu beobachten und zu analysieren.

„Das ist einzigartig in der Molekülphysik“, ist Märk begeistert. „Meine Kollegen in Lyon sehen ganz genau, in welche Bruchstücke die Wassertröpfchen jeweils zerfallen und welche Geschwindigkeiten die entstandenen Bruchstücke dabei haben. Daraus lässt sich wiederum ermitteln, wie die Energie vor dem Zerfall in den Tröpfchen verteilt war.“

Wichtige Einblicke

Die Messergebnisse zeigen, dass auch in sehr kleinen Wassertröpfchen aus zwei bis acht Molekülen die bei Kollisionen aufgenommene Energie sehr rasch über alle Teilchen verteilt wird. Diese für makroskopische Wassertropfen typische Maxwell-Boltzmann-Verteilung ist also selbst in Nanotröpfchen zu beobachten. Die Wissenschaftler um Michel Farizon fanden aber außerdem einen nicht-statistischen Anteil, der in diesem Experiment erstmals nachgewiesen und gemessen werden konnte.

Den Ursprung dieser sogenannten nicht-ergodischen Ereignisse konnten die Forscher mit Hilfe von quantenmechanischen Berechnungen erklären. „Diese Messungen liefern uns einen tiefen Einblick in die Eigenschaften von Wasserstoffbrückenbindungen, die die Wassertröpfchen im Innersten zusammenhalten bzw. für den Energietransfer innerhalb der Tröpfchen verantwortlich sind“, resümiert Tilmann Märk zufrieden.

Die in der renommierten Fachzeitschrift Angewandte Chemie, International Edition veröffentlichten Erkenntnisse sind unter anderem für die Atmosphärenchemie, die Astrochemie und die Biologie, wo solche Prozesse eine wichtige Rolle spielen können, von großem Interesse. Die Zeitschrift hat die Arbeit deshalb auch zum „Hot Topic“ erklärt und ihr die Titelseite einer der nächsten Ausgaben gewidmet.

Gute Beziehungen zu Frankreich

Tilmann Märk hat als erfolgreicher Ionenphysiker über 800 wissenschaftliche Arbeiten in internationalen Fachzeitschriften veröffentlicht und wurde bereits mit zwei Ehrendoktoraten (Bratislava, Lyon) ausgezeichnet. Seit 2011 ist er Rektor der Leopold-Franzens-Universität Innsbruck und hat sich weitgehend aus dem Forschungsbetrieb zurückgezogen.

Im Rahmen von kurzen, aber regelmäßigen Forschungsaufenthalten an der Universität Lyon versucht er dennoch die langjährige Partnerschaft mit französischen KollegInnen zu pflegen. Die gute Zusammenarbeit mit akademischen Einrichtungen in Frankreich wird aber nicht nur vom Rektor persönlich gepflegt, sondern über den Frankreich-Schwerpunkt der Universität Innsbruck auch aktiv gefördert, was sich in zahlreichen Projekten und einem gemeinsamen Masterstudium manifestiert.

Publikation: Velocity of a Molecule Evaporated from a Water Nanodroplet: Maxwell--Boltzmann Statistics versus Non-Ergodic Events. Hassan Abdoul-Carime, Francis Berthias, Linda Feketeová, Mathieu Marciante, Florent Calvo, Valérian Forquet, Henry Chermette, Bernadette Farizon, Michel Farizon, and Tilmann D. Märk. Angewandte Chemie, International Edition 2015 doi:10.1002/anie.201505890

Cover-Bilder: http://dx.doi.org/10.1002/anie.201509527

Rückfragehinweis:
Dr. Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Telefon: +43 512 507 32022
E-Mail: christian.flatz@uibk.ac.at

Weitere Informationen:

http://dx.doi.org/10.1002/anie.201505890 - Velocity of a Molecule Evaporated from a Water Nanodroplet: Maxwell--Boltzmann Statistics versus Non-Ergodic Events. Hassan Abdoul-Carime et.al. Angewandte Chemie, International Edition 2015
http://www.ipnl.in2p3.fr/?lang=en - Institut de Physique Nucleaire de Lyon

Dr. Christian Flatz | Universität Innsbruck

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht CHP1-Mutation verursacht zerebelläre Ataxie
23.01.2018 | Uniklinik Köln

nachricht Lebensrettende Mikrobläschen
23.01.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics