Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verschlüsse von Blutgefäßen: Wissenschaftler klären Mechanismus der zellulären Selbstheilung auf

24.08.2016

Prof. Dr. Klaus T. Preissner vom Institut für Biochemie der Universität Gießen publiziert mit Kolleginnen und Kollegen von der LMU München im Fachjournal „CELL Reports“ zum Thema „Regeneration von Blutgefäßen“

Blutgefäße sind das erste Organisations- und Transportsystem unseres Körpers schon während der Embryonalphase. Ohne Blutgefäße wären das Körperwachstum, und damit auch die Bildung von neuen Geweben und Organen, nicht möglich.


Prof. Dr. Klaus T. Preissner

Foto: Franz Möller (Archiv JLU-Pressestelle)

Im Fokus neuer Forschungsarbeiten, deren Ergebnisse jetzt im Fachjournal „CELL Reports“ publiziert wurden, stehen zelluläre Prozesse, die für die Selbstheilung des Körpers eine immens wichtige Rolle spielen. Autoren der Publikation mit dem Titel Perivascular mast cells govern shear stress-induced arteriogenesis by orchestrating leukocyte function sind Prof. Dr. Klaus T. Preissner vom Institut für Biochemie am Fachbereich 11 – Medizin der Justus-Liebig-Universität Gießen (JLU) und Prof. Dr. Elisabeth Deindl vom Walter-Brendel-Zentrum für Experimentelle Medizin der LMU München sowie weitere internationale Kooperationspartner.

Bei der Arbeit handelt es sich um ein Kooperationsprojekt zwischen JLU Gießen, LMU München und MPI Bad Nauheim. Prof. Deindl hatte die Federführung insgesamt inne; Prof. Preissner koordinierte die Arbeiten in Hessen. Den Expertinnen und Experten ist es gelungen, den Mechanismus der Selbstheilung bei Blutgefäßverschlüssen zu verstehen: Eine regelrechte Kaskade von zellulären Vorgängen ist dafür verantwortlich, dass der menschliche Körper im Falle von Gefäßverschlüssen sogenannte Umgehungskreisläufe („Kollateralgefäße“) bilden kann. Eine Schlüsselfunktion kommt dabei den Mastzellen zu.

Wie erstaunlich die Selbstheilungskräfte des Körpers wirken, erklärt Prof. Preissner: Bei Sauerstoffarmut komme es zur Aussprossung von neuen Kapillaren aus bestehenden Gefäßen – der Fachmann spricht von Angiogenese – oder zur Vergrößerung von Arterien aus bereits vorhandenen kleinen arteriellen Verbindungen (Arteriogenese). Das Wachstum solcher als „Umgehungskreisläufe“ oder „Kollateral-Arterien“ bezeichneten Gefäße werde etwa durch den Verschluss einer größeren benachbarten Arterie ausgelöst:

„Damit stellt der Körper im Herzen oder in anderen Organen eine oft lebensrettende Maßnahme zur Verfügung“. Es handelt sich, so der Biochemiker, „um die einzige physiologisch effiziente Form des Blutgefäßwachstums, die Defizite der Blutzirkulation nach arteriellen Verschlüssen ausgleicht“.

Gefäßverengungen, beispielsweise in Herzkranzarterien als Folge von sogenannten atherosklerotischen Plaques, führen zur Minderdurchblutung (Ischämie) des Organs und zur koronaren Herzkrankheit: Die Folge sind vielen Patientinnen und Patienten aus leidvoller Erfahrung als Angina pectoris oder Linksherzinsuffizienz bekannt. Eine chronische Ischämie kann schließlich zum Absterben der Herzmuskelzellen und zum Herzinfarkt führen.

Abhilfe kann ein „natürlicher Bypass“ bringen: Aufgrund seiner „Selbstheilungskräfte“ besitzt der menschliche Körper das Potenzial, einer dauerhaften Minderdurchblutung durch die Bildung von Kollateralgefäßen entgegenzuwirken. Der Gefäßdurchmesser wird durch diese Arteriogenese auf das bis zu 20-fache gesteigert, was vielfach eine ausreichende Blutversorgung ermöglicht. „Viele Patientinnen und Patienten, die einen nicht wahrgenommenen Gefäßverschluss hinter sich haben, wissen gar nicht, dass sie natürliche Bypässe durch den beschriebenen Prozess gebildet haben“, erläutert Prof. Deindl.

Dennoch stößt die „Selbstheilung“ an ihre Grenzen, wie Prof. Preissner ergänzt. Eine arterielle Verschlusskrankheit, die durch eine Thrombose bedingt ist, laufe meistens zu schnell ab, so dass der langsamere Prozess der Arteriogenese mit seiner Regenerationswirkung zu spät einsetzt.

Die herausragenden Forschungsarbeiten von Prof. Dr. Wolfang Schaper und seiner Gruppe am Max-Planck-Institut in Bad Nauheim in den 1980iger und 1990iger Jahren haben grundlegende Mechanismen der Arteriogenese aufgeklärt. Neben den geänderten physikalischen Kräften des Blutstromes wie der Schubspannung im verengten Gefäß, sind es die größten Abwehrzellen im Blut (Monozyten), die das Kollateralwachstum positiv beeinflussen. Allerdings war bislang unklar, wie sich Strömungsunterschiede im Blut auf das Wachstum von Gefäßwandzellen außerhalb des Blutes auswirken.

Grundlegende Zusammenhänge konnten im Rahmen der Gießener und Münchner Forschungskooperation zusammen mit weiteren internationalen Kooperationspartnern geklärt werden: Die Forscherinnen und Forscher machten die in der direkten Nachbarschaft zu Blutgefäßen liegenden Mastzellen als „Dirigenten“ für eine erfolgreiche Arteriogenese aus.

Mastzellen wurden zum ersten Mal bereits von Paul Ehrlich 1878 beschrieben. Sie stellen die Nummer-eins-Alarmzellen des körpereigenen Immunsystems dar und sind reich an entzündlichen Inhaltsstoffen, die sofort nach Zellaktivierung freigesetzt werden. Bekannt vor allem für ihre entscheidende Rolle bei allergischen Reaktionen, sind die Mastzellen auch an weiteren Prozessen wie Wundheilung und Blutgefäßstabilisierung beteiligt.

Die Autoren der in „CELL Reports“ erschienenen Veröffentlichung fanden nun heraus, dass eine Kaskade von zellulären Vorgängen für die Kollateralgefäßbildung verantwortlich ist, die bis hin zur massiven Ausbreitung von Wachstumsfaktoren reicht. Ausgehend von im Blutstrom gestressten Blutplättchen, die mit Leukozyten Komplexe bilden, werden Sauerstoffradikale ins Gewebe abgegeben und erreichen dort die Mastzellen, die ihrerseits mit einer massiven Freisetzung von Wachstumsfaktoren (Zytokinen) reagieren, damit Abwehrzellen (Monozyten) anlocken und stimulieren. Insgesamt setzen diese Zellen so viele Mediatoren frei, dass der entscheidende Prozess der Arteriogenese für die folgenden sieben bis zehn Tage in Gang gesetzt wird. Ist die Aktivierung von Mastzellen dagegen blockiert oder fehlen diese Zellen, unterbleibt die Bildung der Umgehungskreisläufe. Das Gewebe ist nicht in der Lage, sich zu regenerieren.

Bei der beschriebenen Abfolge der Reaktionen handelt es sich um die zelluläre Reaktionskette der angeborenen Immunabwehr. Die an der Publikation beteiligten Wissenschaftlerinnen und Wissenschaftler sind überzeugt davon, dass die Immunzellen unter dem Dirigat der Mastzellen viel mehr als nur den natürlichen Entzündungsprozess steuern und maßgeblich die Gefäß- und Gewebsregeneration regulieren. Aufgrund ihrer Beobachtungen hoffen die Forscherinnen und Forscher, demnächst auch neue Therapieformen zu entwickeln. Ziel ist es, die Selbstheilungskräfte des Körpers für das Gefäßwachstum in durch Ischämie betroffenen Gewebsarealen zu mobilisieren. Hier könnten Methoden, die die Mastzellen stimulieren, zum Einsatz kommen, um von Gefäßverschlüssen betroffene Gewebe oder Organe durch nicht-chirurgische Verfahren vor dem Absterben zu retten.

Publikation
O. Chillo, (…), K.T. Preissner, E. Deindl: Perivascular mast cells govern shear stress-induced arteriogenesis by orchestrating leukocyte function. Cell Reports, August 2016
DOI: 10.1016/j.celrep.2016.07.040

Weitere Informationen

Kontakt

Prof. Dr. Klaus T. Preissner
Institut für Biochemie, Fachbereich 11 – Medizin der Justus-Liebig-Universität Gießen
Friedrichstraße 24, 35392 Gießen
Telefon: 0641 994 7500
E-Mail: klaus.t.preissner@biochemie.med.uni-giessen.de

Weitere Informationen:

https://www.uni-giessen.de/fbz/fb11/institute/biochemie
http://dx.doi.org/10.1016/j.celrep.2016.07.040
http://www.cell.com/cell-reports/pdf/S2211-1247%2816%2930958-5.pdf (Artikel als pdf)

Lisa Dittrich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften