Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unser täglich Brot – neue Erkenntnisse zum Weizengenom und dessen Bedeutung für die Welternährung

21.07.2014

Wissenschaftler des Helmholtz Zentrums München (HMGU) haben in Zusammenarbeit mit der International Wheat Genome Initiative neue Einblicke in das komplizierte Wechselspiel der Regulation der Gene und Proteine des Weizens erforscht.

Dabei deckten sie Grundlagen der vielfältigen Anpassungsmöglichkeiten des Weizens auf und entschlüsselten die Wege seiner stammesgeschichtlichen Entwicklung. Die Untersuchungen bilden die Basis für die Regulation eines polyploiden* Genoms. Die Ergebnisse sind nun gesammelt in vier Publikationen der renommierten Fachzeitschrift ‚Science‘ erschienen.

Weizen (Triticum aestivum L.) ist das am weitesten verbreitete Getreide. Es stellt 20 Prozent der Kalorien, die von der Menschheit verbraucht werden. Als polyploide Pflanze enthält Weizen sechs Kopien seiner genetischen Ausstattung (hexaploid) und übersteigt die Größe des menschlichen Genoms um mehr als das fünffache. Dies macht die Forschung am Genom besonders schwierig.

Dr. Klaus Mayer, Leiter der Abteilung Genomik und Systembiologie pflanzlicher Genome am HMGU, konnte nun gemeinsam mit seinen Kollegen Matthias Pfeifer, Dr. Karl Kugler und Manuel Spannagl Einblicke in das komplexe Wechselspiel der Regulation, wie z.B. Gene in verschiedenen Stadien der Kornentwicklung abgelesen werden, gewinnen. „Unsere Untersuchungen helfen uns zu verstehen, wie ein polyploides Gen reguliert wird. Dies wird zukünftige Züchtung, landwirtschaftlichen Anbau und industrielle Eigenschaften von Weizen beeinflussen“, sagt Mayer.

Verstehen als Grundlage der Züchtung

Die nun entdeckten, ganz spezifischen Aktivitäten des Weizens zwischen und innerhalb der Chromosomen, lassen viele verschiedene Anpassungsmöglichkeiten an die Umwelt zu. „Je besser wir die Organisation, Funktion und Evolution des großen, polyploiden Genoms verstehen, umso leichter können wir die für die Züchtung wichtigen Gene identifizieren“, erklärt Mayer. „So wird es möglich, für unterschiedliche Standorte eine möglichst geeignete Pflanze zu züchten“.

Lange Entstehungsgeschichte – viele Entwicklungsmöglichkeiten

Auf etwa sieben Millionen Jahre zurück können die Wissenschaftler nun einen gemeinsamen Vorfahren des Weizen-Typs ‚A‘ und ‚B‘ datieren. Aus diesen ist ein bis zwei Millionen Jahre später ein weiterer, eigenständiger Typ ‚D‘ hervorgegangen. „Wir haben herausgefunden, dass unser heutiges Brotweizengenom das vorläufige Endprodukt einer Vielzahl von Kreuzungen und Hybridisierungen während der Artenentwicklung des Weizens ist. Deshalb müssen wir es als ein stammesgeschichtlich vielschichtiges Mosaik verstehen“, erläutert Mayer.

Durch den Vergleich verschiedener, ausgewählter Genome des Weizens ist klar geworden, dass für verschiedene Zwecke unterschiedliche (Sub-)Genome bevorzugt und genutzt werden. Es fand sich keine Dominanz für ein bestimmtes Genom. „Die neu gewonnenen Einsichten in die Biologie des Weizengenoms ermöglichen uns, Gene rascher zu isolieren und die Entwicklung von Markern für die Züchtung voranzutreiben. Das sind die Grundbausteine für die Herausforderung, den zunehmenden Bedarf der Welternährung bei stagnierenden Erträgen, Pflanzenkrankheiten und einem sich ändernden Klima erfolgreich zu begegnen“, sagt Mayer.

Weitere Forschungsergebnisse zum Thema Weizengenom:

Durchbruch für die Genetik von Brotweizen: Weizengenom vereint Elemente drei verschiedener Grassorten; Link : http://www.helmholtz-muenchen.de/aktuelles/pressemitteilungen/2012/pressemitteil...

Weiter Informationen

Original-Publikationen:

International Wheat Genome Sequencing Consortium/ Mayer et al.(2014), A chromosome-based draft sequence of the hexaploid bread wheat genome, Science, doi: 10.1126/science.1251788

Link zur Fach-Publikation: http://www.sciencemag.org/content/345/6194/1251788.abstract

Marcussen, T. et al (2014), Ancient hybridizations among the ancestral genomes of bread wheat, Science, doi: 10.1126/science.1250092

Link zur Fach-Publikation: http://www.sciencemag.org/content/345/6194/1250092.abstract

Pfeifer, M. et al. (2014), Genome interplay in the grain transcriptome of hexaploid bread wheat, Science, doi: 10.1126/science.1250091

Link zur Fach-Publikation: http://www.sciencemag.org/content/345/6194/1250091.abstract

Choulet, F. et al. 2014), Structural and Functional Partitioning of Bread Wheat Chromosome 3B, Science, doi: 10.1126/science.1249721

Link zur Fach-Publikation: http://www.sciencemag.org/content/345/6194/1249721

*polyploid: sind mehr als zwei Chromosomensätze vorhanden wird von einem polyploiden Genom gesprochen

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.200 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 34.000 Beschäftigten angehören.

Der Schwerpunkt der Abteilung Genomik und Systembiologie pflanzlicher Genome (PGSB) ist die Genom- und Systemorientierte Bioinformatik pflanzlicher Genome. In diesem Rahmen werden Genomverschlüsselungen, Expressionsmuster, funktionelle und systembiologische Fragestellungen untersucht. PGSB verwaltet außerdem einen großen Datensatz pflanzlicher Genome in Datenbanken und macht diese zusammen mit vergleichenden Analysen der Öffentlichkeit zugänglich. PGSB gehört zum Institut für Bioinformatik und Systembiologie.

Kontakt für Medien:
Abteilung Kommunikation
Helmholtz Zentrum München -
Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)
Ingolstädter Landstraße 1
85764 Neuherberg
Tel.: +49 89 3187-2238
E-Mail: presse@helmholtz-muenchen.de

Fachlicher Ansprechpartner

Dr. Klaus Mayer, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Abteilung Genomik und Systembiologie pflanzlicher Genome, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel.: 089-3187-3584 - E-Mail: k.mayer@helmholtz-muenchen.de

Weitere Informationen:

http://www.helmholtz-muenchen.de/aktuelles/uebersicht/pressemitteilungnews/artic...

Susanne Eichacker | Helmholtz-Zentrum

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nerven steuern die Bakterienbesiedlung des Körpers
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Mit künstlicher Intelligenz zum chemischen Fingerabdruck
26.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie