Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unser täglich Brot – neue Erkenntnisse zum Weizengenom und dessen Bedeutung für die Welternährung

21.07.2014

Wissenschaftler des Helmholtz Zentrums München (HMGU) haben in Zusammenarbeit mit der International Wheat Genome Initiative neue Einblicke in das komplizierte Wechselspiel der Regulation der Gene und Proteine des Weizens erforscht.

Dabei deckten sie Grundlagen der vielfältigen Anpassungsmöglichkeiten des Weizens auf und entschlüsselten die Wege seiner stammesgeschichtlichen Entwicklung. Die Untersuchungen bilden die Basis für die Regulation eines polyploiden* Genoms. Die Ergebnisse sind nun gesammelt in vier Publikationen der renommierten Fachzeitschrift ‚Science‘ erschienen.

Weizen (Triticum aestivum L.) ist das am weitesten verbreitete Getreide. Es stellt 20 Prozent der Kalorien, die von der Menschheit verbraucht werden. Als polyploide Pflanze enthält Weizen sechs Kopien seiner genetischen Ausstattung (hexaploid) und übersteigt die Größe des menschlichen Genoms um mehr als das fünffache. Dies macht die Forschung am Genom besonders schwierig.

Dr. Klaus Mayer, Leiter der Abteilung Genomik und Systembiologie pflanzlicher Genome am HMGU, konnte nun gemeinsam mit seinen Kollegen Matthias Pfeifer, Dr. Karl Kugler und Manuel Spannagl Einblicke in das komplexe Wechselspiel der Regulation, wie z.B. Gene in verschiedenen Stadien der Kornentwicklung abgelesen werden, gewinnen. „Unsere Untersuchungen helfen uns zu verstehen, wie ein polyploides Gen reguliert wird. Dies wird zukünftige Züchtung, landwirtschaftlichen Anbau und industrielle Eigenschaften von Weizen beeinflussen“, sagt Mayer.

Verstehen als Grundlage der Züchtung

Die nun entdeckten, ganz spezifischen Aktivitäten des Weizens zwischen und innerhalb der Chromosomen, lassen viele verschiedene Anpassungsmöglichkeiten an die Umwelt zu. „Je besser wir die Organisation, Funktion und Evolution des großen, polyploiden Genoms verstehen, umso leichter können wir die für die Züchtung wichtigen Gene identifizieren“, erklärt Mayer. „So wird es möglich, für unterschiedliche Standorte eine möglichst geeignete Pflanze zu züchten“.

Lange Entstehungsgeschichte – viele Entwicklungsmöglichkeiten

Auf etwa sieben Millionen Jahre zurück können die Wissenschaftler nun einen gemeinsamen Vorfahren des Weizen-Typs ‚A‘ und ‚B‘ datieren. Aus diesen ist ein bis zwei Millionen Jahre später ein weiterer, eigenständiger Typ ‚D‘ hervorgegangen. „Wir haben herausgefunden, dass unser heutiges Brotweizengenom das vorläufige Endprodukt einer Vielzahl von Kreuzungen und Hybridisierungen während der Artenentwicklung des Weizens ist. Deshalb müssen wir es als ein stammesgeschichtlich vielschichtiges Mosaik verstehen“, erläutert Mayer.

Durch den Vergleich verschiedener, ausgewählter Genome des Weizens ist klar geworden, dass für verschiedene Zwecke unterschiedliche (Sub-)Genome bevorzugt und genutzt werden. Es fand sich keine Dominanz für ein bestimmtes Genom. „Die neu gewonnenen Einsichten in die Biologie des Weizengenoms ermöglichen uns, Gene rascher zu isolieren und die Entwicklung von Markern für die Züchtung voranzutreiben. Das sind die Grundbausteine für die Herausforderung, den zunehmenden Bedarf der Welternährung bei stagnierenden Erträgen, Pflanzenkrankheiten und einem sich ändernden Klima erfolgreich zu begegnen“, sagt Mayer.

Weitere Forschungsergebnisse zum Thema Weizengenom:

Durchbruch für die Genetik von Brotweizen: Weizengenom vereint Elemente drei verschiedener Grassorten; Link : http://www.helmholtz-muenchen.de/aktuelles/pressemitteilungen/2012/pressemitteil...

Weiter Informationen

Original-Publikationen:

International Wheat Genome Sequencing Consortium/ Mayer et al.(2014), A chromosome-based draft sequence of the hexaploid bread wheat genome, Science, doi: 10.1126/science.1251788

Link zur Fach-Publikation: http://www.sciencemag.org/content/345/6194/1251788.abstract

Marcussen, T. et al (2014), Ancient hybridizations among the ancestral genomes of bread wheat, Science, doi: 10.1126/science.1250092

Link zur Fach-Publikation: http://www.sciencemag.org/content/345/6194/1250092.abstract

Pfeifer, M. et al. (2014), Genome interplay in the grain transcriptome of hexaploid bread wheat, Science, doi: 10.1126/science.1250091

Link zur Fach-Publikation: http://www.sciencemag.org/content/345/6194/1250091.abstract

Choulet, F. et al. 2014), Structural and Functional Partitioning of Bread Wheat Chromosome 3B, Science, doi: 10.1126/science.1249721

Link zur Fach-Publikation: http://www.sciencemag.org/content/345/6194/1249721

*polyploid: sind mehr als zwei Chromosomensätze vorhanden wird von einem polyploiden Genom gesprochen

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.200 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 34.000 Beschäftigten angehören.

Der Schwerpunkt der Abteilung Genomik und Systembiologie pflanzlicher Genome (PGSB) ist die Genom- und Systemorientierte Bioinformatik pflanzlicher Genome. In diesem Rahmen werden Genomverschlüsselungen, Expressionsmuster, funktionelle und systembiologische Fragestellungen untersucht. PGSB verwaltet außerdem einen großen Datensatz pflanzlicher Genome in Datenbanken und macht diese zusammen mit vergleichenden Analysen der Öffentlichkeit zugänglich. PGSB gehört zum Institut für Bioinformatik und Systembiologie.

Kontakt für Medien:
Abteilung Kommunikation
Helmholtz Zentrum München -
Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)
Ingolstädter Landstraße 1
85764 Neuherberg
Tel.: +49 89 3187-2238
E-Mail: presse@helmholtz-muenchen.de

Fachlicher Ansprechpartner

Dr. Klaus Mayer, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Abteilung Genomik und Systembiologie pflanzlicher Genome, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel.: 089-3187-3584 - E-Mail: k.mayer@helmholtz-muenchen.de

Weitere Informationen:

http://www.helmholtz-muenchen.de/aktuelles/uebersicht/pressemitteilungnews/artic...

Susanne Eichacker | Helmholtz-Zentrum

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics