Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ungeahnte Formenvielfalt roter Blutkörperchen

14.11.2016

Forscher stellen gängige physikalische Vorstellung des Fließverhaltens von Blut in Frage -- Eine Ursache von Durchblutungsstörungen kann eine veränderte Zähflüssigkeit oder "Viskosität" des Blutes sein. Untersuchungen deutscher und französischer Physiker legen nun einen Zusammenhang zwischen der Viskosität des Blutes und der plastischen Formbarkeit roter Blutkörperchen nahe. Die Ergebnisse widersprechen damit der gängigen physikalischen Vorstellung, die rote Blutkörperchen als Tropfen in einer Flüssigkeit betrachtet. Die Forscher raten dazu, Krankheiten, die die Formbarkeit der Blutzellen beeinflussen, auch unter diesem Aspekt zu untersuchen.

Etwa fünf bis sechs Liter Blut fließen durch unsere Adern, jederzeit. Gerät dieser Prozess ins Stocken, sind unsere Gesundheit oder gar unser Leben in Gefahr. Eine Ursache von Durchblutungsstörungen kann eine veränderte Zähflüssigkeit oder "Viskosität" des Blutes sein. Untersuchungen deutscher und französischer Physiker legen nun einen Zusammenhang zwischen der Viskosität des Blutes und der plastischen Formbarkeit roter Blutkörperchen nahe.


Mikroskopische Aufnahmen (oben) und Ergebnisse von Simulationen (unten) roter Blutkörperchen in Scherung: Bei niedriger Scherrate beobachteten die Forscher vor allem diskusförmige Erythrozyten, in der Mitte von beiden Seiten leicht eingedellt (links), die sich taumelnd bewegen. Bei mäßig steigender Scherrate überwiegen Blutzellen, die eine ihrer zwei Eindellungen verloren haben, und sich rollend wie Reifen bewegen. Eine noch höhere Scherrate hat ellipsenförmig verbogene Erythrozyten zur Folge (Mitte und Film 1); eine weitere Steigerung verursacht eine zusätzliche Eindellung der ellipsenförmigen Zelle. In der letzten untersuchten Stufe fanden die Forscher zunehmend Erythrozyten, die mit drei Dellen eine Form hatten, die einer Pyramide ähnelt (rechts und Film 2). Welche Formen überwiegen, hängt auch mit der Konzentration der Blutzellen zusammen (Film 3). Weitere Filme der Forscher, darunter Hochgeschwindigkeitsaufnahmen echter Erythrozytenbewegungen, sind hier frei zugänglich: http://www.pnas.org/content/suppl/2016/11/09/1608074113.DCSupplemental

Copyright: Forschungszentrum Jülich

Die Ergebnisse widersprechen damit der gängigen physikalischen Vorstellung, die rote Blutkörperchen als Tropfen in einer Flüssigkeit betrachtet. Die Forscher raten dazu, Krankheiten, die die Formbarkeit der Blutzellen beeinflussen, auch unter diesem Aspekt zu untersuchen (Proceedings of the National Academy of Sciences Online Early Edition, DOI: 10.1073/pnas.1608074113).

Blut ist dicker als Wasser, sagt der Volksmund. Physikalisch betrachtet ist das ohne Zweifel richtig. Doch greift es zu kurz, sich den Lebenssaft als einfache Flüssigkeit vorzustellen. Fast die Hälfte jedes Blutstropfens besteht aus zellulären Bestandteilen, vor allem roten Blutkörperchen. Von diesen Zellen, auch Erythrozyten genannt, tummeln sich etwa 4,5 bis 5,5 Millionen in jedem Kubikmillimeter. Sie bestimmen wesentlich die Viskosität: Je höher der Erythrozytgehalt, umso zähflüssiger ist das Blut.

Ebenso wichtig ist die so genannte Scherrate – die Kraft, die beim Fluss entlang einer Gefäßwand auf die Erythrozyten wirkt. Sie wirkt der Neigung der Zellen entgegen, zusammen zu kleben, und verringert so die Viskosität. Weil die Scherrate umso größer ist, je schneller das Blut fließt und je kleiner der Gefäßdurchmesser ist, kann Blut bei großen Anstrengungen leichter die Blutgefäße durchfließen; das entlastet das Herz.

Wissenschaftler des Forschungszentrums Jülich sowie der französischen Universität Montpellier fanden nun Hinweise darauf, dass auch die Formbarkeit der roten Blutkörperchen einen entscheidenden Anteil an der Fließfähigkeit des Blutes hat. Bei zahlreichen Fließexperimenten hatten Forscher bisher charakteristische Bewegungen roter Blutkörperchen beobachtet: Die Erythrozyten bewegten sich ähnlich wie Wassertropfen, die eine Glasscheibe entlang laufen. Im Ruhezustand haben Erythrozyten die Form eines Diskus mit verdicktem Rand.

Die Forscher fanden bei ihren Experimenten und Computersimulationen nun mehrere ganz andere Formen und Bewegungen, abhängig von der Konzentration der Blutzellen sowie der Scherrate. "Unsere Untersuchungen legen nahe, dass physiologische Phänomene, bei denen man bisher von einer tropfenähnlichen Bewegung der Erythrozyten ausgegangen ist, neu untersucht werden sollten", berichtet Prof. Gerhard Gompper, Direktor am Institute for Advanced Simulation und am Institute of Complex Systems des Forschungszentrums Jülich. Es sei möglich, dass Störungen der Formbarkeit der roten Blutkörperchen eine Schlüsselrolle bei der Ausbildung von Krankheiten einnehmen, die mit gestörter Durchblutung einhergehen.

Früheren Untersuchungen blieb die Formenvielfalt verborgen, da dabei Flüssigkeiten verwendet wurden, die um ein Vielfaches viskoser waren als das Innere der roten Blutkörperchen, so die Forscher. "Dies sollte im Labor die hohen Scherraten und hohen Scherkräfte zugänglich machen, die in echtem Blut in der Mikrozirkulation auftreten", erläutert Dr. Dmitry Fedosov, Mitarbeiter am Institute of Complex Systems. "Unter physiologischen Bedingungen beträgt jedoch die Viskosität des Blutplasmas nur etwa ein Fünftel der Viskosität innerhalb der Erythrozyten." Deshalb hat das Jülicher Team die Fließbewegung roter Blutkörperchen nun bei realitätsnahen Bedingungen simuliert, ebenso wie die französischen Kooperationspartner des Teams ihre Kapillar- und Scherexperimente nun in Flüssigkeiten durchführten, deren Viskosität den natürlichen Bedingungen näher kam.

Originalveröffentlichung:

Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions;
L. Lanotte et al.;
Proceedings of the National Academy of Sciences Early Edition, DOI: 10.1073/pnas.1608074113, Publication Date (Web): Week of November 7-11, 2016

Bilder/Filme:

Blutkörperchen in ScherungMikroskopische Aufnahmen (oben) und Ergebnisse von Simulationen (unten) roter Blutkörperchen in Scherung: Bei niedriger Scherrate beobachteten die Forscher vor allem diskusförmige Erythrozyten, in der Mitte von beiden Seiten leicht eingedellt (links), die sich taumelnd bewegen. Bei mäßig steigender Scherrate überwiegen Blutzellen, die eine ihrer zwei Eindellungen verloren haben, und sich rollend wie Reifen bewegen. Eine noch höhere Scherrate hat ellipsenförmig verbogene Erythrozyten zur Folge (Mitte und Film 1); eine weitere Steigerung verursacht eine zusätzliche Eindellung der ellipsenförmigen Zelle. In der letzten untersuchten Stufe fanden die Forscher zunehmend Erythrozyten, die mit drei Dellen eine Form hatten, die einer Pyramide ähnelt (rechts und Film 2). Welche Formen überwiegen, hängt auch mit der Konzentration der Blutzellen zusammen (Film 3). -- Die beschriebenen Filme finden Sie auf der Website des Forschungszentrums Jülich: http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2016/2016-11-10-blu... Weitere Filme der Forscher, darunter Hochgeschwindigkeitsaufnahmen echter Erythrozytenbewegungen, sind hier frei zugänglich: http://www.pnas.org/content/suppl/2016/11/09/1608074113.DCSupplemental
Copyright: Forschungszentrum Jülich

Ansprechpartner:

Dr. Dmitry Fedosov
Forschungszentrum Jülich
Institute of Complex Systems - Theorie der Weichen Materie und Biophysik (ICS-2)
Tel. 02461 61-2972
E-Mail: d.fedosov@fz-juelich.de

Prof. Dr. Gerhard Gompper
Forschungszentrum Jülich
Institute of Complex Systems und Institute for Advanced Simulation - Theorie der Weichen Materie und Biophysik (ICS-2/IAS-2)
Tel. 02461 61-4012
E-Mail: g.gompper@fz-juelich.de

Pressekontakt:

Angela Wenzik
Wissenschaftsjournalistin
Forschungszentrum Jülich
Tel. 02461 61-6048
E-Mail: a.wenzik@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2016/2016-11-10-blu... Pressemitteilung auf der Website des Forschungszentrum Jülich mit den beschriebenen Filmen
http://www.pnas.org/content/suppl/2016/11/09/1608074113.DCSupplemental Weitere Filme der Forscher, darunter Hochgeschwindigkeitsaufnahmen echter Erythrozytenbewegungen
http://www.fz-juelich.de/ics/DE/Home/home_node.html - Website des Institute of Complex Systems

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Demographie beeinflusst Brutfürsorge bei Regenpfeifern
25.04.2018 | Max-Planck-Institut für Ornithologie

nachricht Von der Genexpression zur Mikrostruktur des Gehirns
24.04.2018 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Silizium als neues Speichermaterial für die Akkus der Zukunft

25.04.2018 | HANNOVER MESSE

IAB-Arbeitsmarktbarometer: Trotz Dämpfer auf gutem Niveau

25.04.2018 | Wirtschaft Finanzen

AWI-Forscher messen Rekordkonzentration von Mikroplastik im arktischen Meereis

25.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics