Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tiefseemuscheln und -schwämme gedeihen auf Öl: Des einen Freud, des anderen Leid

20.06.2017

Wissenschaftler aus Bremen und den USA haben Meerestiere entdeckt, die in Symbiose mit Bakterien leben, welche Öl als Energiequelle verwenden. In der Tiefsee im Golf von Mexiko gibt es Vulkane, die Öl und Asphalt speien. Dort leben Muscheln und Schwämme in Symbiose mit Bakterien, die ihnen Nahrung liefern. Diese Symbionten ernähren sich von kurzkettigen Alkanen aus dem Öl. Die Forscher entdeckten zudem, dass nah verwandte Bakterien diese Fähigkeit beim Abbau der Ölpest nach der Explosion der Ölbohrplattform Deepwater Horizon nutzten.

Gestank und Hitze, wenn ein neuer Straßenbelag aufgebracht wird; schwarze Klumpen am Strand, die an den Füßen kleben – Asphalt wirkt nicht wie ein gemütlicher Lebensraum. Dennoch kann er die Grundlage florierender Ökosysteme bilden - für Muscheln, Krebse, Würmer, Schwämme und viele andere Bewohner.


Der Tauchroboter MARUM-Quest sammelt Muscheln, die Cycloclasticus-Symbionten enthalten, und ölreiche Asphalte an einem Gasaustritt in 3000 Metern Meerestiefe ein.

MARUM − Zentrum für Marine Umweltwissenschaften, Universität Bremen


Innerhalb von Zellen in den Kiemen von Bathymodiolus-Muscheln (Zellkern in blau) finden sich Cycloclasticus (grün) neben größeren, methanoxidierenden Bakterien (rot).

Max-Planck-Institut für Marine Mikrobiologie, Bremen

Asphaltvulkane voller Leben

In den Tiefen des Golfs von Mexiko tritt Öl und Asphalt aus dem Meeresboden und bildet bizarr anmutende Strukturen, die an erkaltete Lava erinnern – so genannte Asphaltvulkane. Vor fast 15 Jahren entdeckten Bremer und US-amerikanische Forscher diesen Lebensraum. Noch immer steckt er voller Überraschungen, wie eine nun in Nature Microbiology veröffentlichte Studie einer internationalen Forschergruppe um Maxim Rubin-Blum und Nicole Dubilier vom Bremer Max-Planck-Institut zeigt.

Symbiontische Bakterien verwenden eine neue Energie- und Kohlenstoffquelle

Die Campeche Knolls-Asphaltvulkane in etwa 3000 Metern Wassertiefe im Golf von Mexiko beheimaten eine diverse Lebensgemeinschaft. Doch wovon leben die Organismen?

„Den Asphalt und das Öl, die aus dem Boden treten, können sie nicht fressen, und andere Nahrungsquellen sind in der Tiefsee rar“, erklärt Rubin-Blum. „Darum haben sich einige von ihnen mit Bakterien zusammengetan, die ihnen aus der Patsche helfen: Diese können aus dem Öl sowohl Energie als auch lebenswichtigen Kohlenstoff gewinnen.“ Solche Bakterien haben Meeresforscher schon an anderen öl-reichen Standorten gefunden – allerdings als freilebende Mikroorganismen.

Verwöhnte Ringbrecher

Diese ölfressenden Bakterien gehören zur Gruppe Cycloclasticus. Ihren Namen, der „Ringbrecher“ bedeutet, verdanken sie einer besonderen Fähigkeit: Sie können schwer abbaubare Ringstrukturen im Öl, so genannte PAHs (polyzyklische aromatische Kohlenwasserstoffe), knacken und verwerten. Das ist ein mühseliger Prozess, der viel Energie verschlingt.

Die symbiotischen Cycloclasticus, die die Bremer Forscher an den Asphaltvulkanen entdeckt haben, machen sich die Sache leichter. Sie haben sich auf leicht abbaubare Bestandteile des Öls spezialisiert - so genannte kurzkettige Alkane wie Butan, Ethan und Propan. „Die Ringe der PAHs können diese Mikroorganismen gar nicht mehr knacken“, erklärt Rubin-Blum. „Sie haben die dazu notwendigen Gene verloren.“ Solche Cycloclasticus-Bakterien, die rein auf kurzkettige Alkane setzen und keine PAH-Ringe mehr knacken können, kannte man bisher nicht.

Weil kurzkettige Alkane so leicht zu verwerten sind, konkurrieren viele Mikroorganismen darum. Wie können es sich die symbiotischen Bakterien erlauben, auf eine so heiß umkämpfte Nahrung zu setzen und ihre außergewöhnlichen Ringbrecher-Fähigkeiten zu vernachlässigen? Und das, obwohl sie in einem Lebensraum leben, der reich an PAH-Ringen ist?

„Wir vermuten, dass sie sich diesen ‚Luxus’ nur leisten können, weil sie sich bei Muscheln und Schwämmen als Symbionten eingemietet haben“, erläutert Mitautorin Nicole Dubilier vom Bremer Max-Planck-Institut. „Ihre Wirte filtern das umliegende Meerwasser und liefern ihnen dadurch kontinuierlich kurzkettige Alkane. So leben sie konkurrenzfrei an einem geschützten Standort und müssen nicht mit freilebenden Bakterien konkurrieren.“

“Das ist das erste Mal, dass wir eine Symbiose auf Basis kurzkettiger Alkane finden”, fügt Rubin-Blum hinzu. Die vorliegende Studie erweitert damit das Spektrum an bekannten Stoffen, die chemosynthetische Symbiosen antreiben können.

Freilebende Verwandtschaft: Erst die Schmankerl, dann die zähen Happen

In einem weiteren Schritt verglichen Rubin-Blum, Dubilier und ihre Kollegen das Genom der symbiotischen Bakterien mit dem freilebender, nah verwandter Cycloclasticus-Arten. Diese traten im Golf von Mexiko nach der Deepwater Horizon-Ölkatastrophe in großen Zahlen auf. Tatsächlich konnte auch manche freilebende Art kurzkettige Alkane abbauen.

„Das war überraschend, denn bislang dachte man, Cycloclasticus können nur PAHs abbauen“, erklärt Dubilier. Kurzkettige Alkane sind vor allem unmittelbar nach einem Ölaustritt zu finden und werden schnell und von vielen Organismen abgebaut. Im Gegensatz zu den symbiotischen Bakterien sind die freilebenden aber weiterhin in der Lage, auch PAHs zu nutzen. „So bleiben sie flexibel. Sind die kurzkettigen Häppchen aufgebraucht, können sie immer noch die deutlich zäheren PAHs verwerten“, so Dubilier.

„Offensichtlich handelt es sich bei Cycloclasticus um eine Schlüsselfigur im marinen Ölabbau“, fügt Rubin-Blum hinzu. “Als nächstes wollen wir daher die Physiologie und den Stoffwechsel der symbiotischen und freilebenden Arten genau vergleichen, um so mehr über deren Beitrag zum Abbau von Kohlenwasserstoffen im Meer zu erfahren.”


Originalveröffentlichung

Maxim Rubin-Blum, Chakkiath Paul Antony, Christian Borowski, Lizbeth Sayavedra, Thomas Pape, Heiko Sahling, Gerhard Bohrmann, Manuel Kleiner, Molly C. Redmond, David L. Valentine, Nicole Dubilier (2017): Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps. Nature Microbiology.
DOI: 10.1038/nmicrobiol.2017.93

Beteiligte Institute

Max-Planck-Institut für Marine Mikrobiologie, Bremen
MARUM – Zentrum für Marine Umweltwissenschaften Universität Bremen
Department of Geoscience, Universität Calgary, Kanada
Department of Biological Sciences, Universität von North Carolina, Charlotte, USA
Department of Earth Science, Universität von Kalifornien, Santa Barbara, USA

Rückfragen bitte an

Dr. Maxim Rubin-Blum
Max-Planck-Institut für Marine Mikrobiologie
Telefon: +49 421 2028 905
E-Mail: mrubin@mpi-bremen.de

Prof. Dr. Nicole Dubilier
Max-Planck-Institut für Marine Mikrobiologie
Telefon: +49 421 2028 932
E-Mail: ndubilie@mpi-bremen.de

oder an die Pressestelle

E-Mail: presse@mpi-bremen.de

Dr. Fanni Aspetsberger
Telefon: +49 421 2028 947

Dr. Manfred Schlösser
Telefon: +49 421 2028 704

Dr. Fanni Aspetsberger | Max-Planck-Institut für marine Mikrobiologie
Weitere Informationen:
http://www.mpi-bremen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Up-Scaling: Katalysatorentwicklung im Industriemaßstab
22.11.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Ozeanversauerung schädigt Miesmuscheln im Frühstadium
22.11.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien als Schrittmacher des Darms

22.11.2017 | Biowissenschaften Chemie

Ozeanversauerung schädigt Miesmuscheln im Frühstadium

22.11.2017 | Biowissenschaften Chemie

Die gefrorenen Küsten der Arktis: Ein Lebensraum schmilzt davon

22.11.2017 | Geowissenschaften