Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzen vor Trockenheit schützen: An- und Ausschalter für Spaltöffnungen (Stomata) entdeckt

23.09.2014

Auch bei längeren Trockenperioden ausreichend Ernte zu liefern, wird für Nutzpflanzen im Zuge des Klimawandels immer mehr an Bedeutung gewinnen. Wissenschaftler konnte nun zeigen, welche Signale zum Öffnen und Schließen der pflanzlichen Spaltöffnungen nötig sind. Damit schufen sie die Grundlage zur Züchtung von trockenresistenten Nutzpflanzen.

Das Klima auf der Erde verändert sich und bringt extremere Umweltverhältnisse für viele Anbauregionen mit sich. Massive Regenfälle, aber auch längere und häufigere Trockenperioden werden die Anforderungen an unsere Nutzpflanzen verändern.


Stomata sind winzige Spaltöffnungen der Epidermis. Sie regeln den internen und externen Gasaustausch. Das Bild zeigt die Stomata (grün) des Zebrakrauts (Tradescantia zebrina). (Bildquelle: © AioftheStorm/ wikimedia.org / CC0 1.0)

Zudem wollen immer mehr Menschen mit Grundnahrungsmitteln versorgt werden. Daher werden Nutzpflanzen, die trotz solcher Klimaextreme gute Ernteerträge liefern, an Bedeutung gewinnen. Um gezielt klimarobuste Pflanzen zu züchten, müssen Wissenschaftler zunächst verstehen, welche molekularen Mechanismen einer Pflanze Anpassungsfähigkeit verleihen. Forscher der Julius-Maximilians-Universität Würzburg haben diese am Beispiel der Trockentoleranz untersucht.

Wildpflanzen sind robuster

Kulturpflanzen wie Kartoffeln und Zuckerrüben halten Trockenheit sehr viel schlechter aus als Wildpflanzen. „Das ist ein Ergebnis der Züchtung auf hohe Erträge“, sagt Studienleiter Rainer Hedrich von der Universität Würzburg. „Unsere Hochleistungspflanzen haben die natürliche Stresstoleranz ihrer frühen Ahnen eingebüßt, sie sind abhängig geworden von künstlicher Bewässerung und Düngung.“

Frühe Landpflanzen entwickelten Trockentoleranz

Um zu verstehen, wie Pflanzen ihre Trockentoleranz auf molekularer Ebene steuern, lohnt ein Blick auf die Entstehungsgeschichte dieser Fähigkeit. Für Algen und Wasserpflanzen, die frühen pflanzlichen Erdbewohner, ist Trockenheit noch kein Thema. Erst als die Pflanzen im Laufe der Evolution das Land als Lebensraum eroberten, waren sie mit längeren Trockenperioden konfrontiert. Um diese Phasen zu überleben, mussten evolutionsgeschichtlich alte Landpflanzen wie Moose und Farne schon vor etwa 480 Millionen Jahren eine Toleranz gegen Austrocknung entwickeln.

Frühe Landpflanzen reagieren auf Trockenstress, indem sie das Hormon Abscisinsäure (ABA) bilden. ABA wiederum aktiviert Gene, die für bestimmte Schutzproteine codieren. Diese erlauben es den Pflanzen, einen starken Wasserverlust oder sogar ein völliges Austrocknen zu überleben.

Stomata regulieren den Wasserhaushalt

Die Blütenpflanzen, die in der Evolution auf Moose und Farne folgten, haben ein anderes System etabliert, um mit Trockenheit umzugehen: In ihren Blättern besitzen sie verschließbare Poren, die Stomata, mit deren Hilfe sie einen Wasserverlust sehr stark vermindern können. Auch hier schlägt das Stresshormon ABA bei Trockenheit Alarm, worauf sich die Spaltöffnungen in den Blättern schließen. Gesteuert wird dieser Prozess über Ionenkanäle in den beiden sichelförmigen Schließzellen der Stomata. Auf das Signal von ABA hin setzten diese Kanäle Ionen aus den Schließzellen frei. Auf diese Weise verringert sich der Zelldruck, die Poren schließen sich und die Pflanze verdunstet weniger Wasser. Zu großzügig darf sie dabei allerdings nicht sein. Denn geschlossene Poren bedeuten auch, dass weniger CO2 für die Energiegewinnung durch Photosynthese zur Verfügung steht.

Was genau an den Stomata abläuft, wenn eine Pflanze mit Trockenheit klarkommen muss, ist komplizierter als vermutet, wie die aktuelle Studie zeigt. Denn die Kanäle reagieren nicht nur auf ein bestimmtes Signal, sondern auf mehrere verschiedene Signale. Chemisch gesehen, handelt es sich bei diesen Signalen um sogenannte Phosphorylierungen. Dabei bekommen die Kanäle mit Namen SLAC1 an unterschiedlichen Stellen von unterschiedlichen Enzymen, den Proteinkinasen, Phosphat-Moleküle angeheftet und werden dadurch aktiviert. Eine Kinase namens OST1 spielt dabei die wichtigste Rolle: „Wenn sie in Pflanzen fehlt, reagieren die Schließzellen überhaupt nicht

mehr auf das Hormon ABA“, so Co-Studienleiter Dietmar Geiger. Weitere Untersuchungen der Forscher zeigten, dass die SLAC1-Kanäle über einzelne Aminosäuren im Kanalprotein an- und abschaltbar sind.

Ahnenforschung zur Trockentoleranz

Auch die entwicklungsgeschichtliche Entstehung der Trockentoleranz wollen die Wissenschaftler beleuchten. „Wir sind derzeit dabei, SLAC1- und OST1-Verwandte aus Algen, Moosen, Farnen und Blütenpflanzen zu klonieren“, sagt er. Am Ende soll geklärt werden, wann sich in Pflanzen eine Wechselwirkung zwischen den beiden Molekülen gebildet hat und wann Schließzellen die Fähigkeit erworben haben, den Öffnungsgrad der Blattporen über das Hormon ABA zu kontrollieren.

Mit diesem Wissen arbeiten die Wissenschaftler nun daran, die Kanalproteine gezielt umzubauen. Diese Arbeit soll als Grundlage für spätere Züchtungsvorhaben dienen, in den Pflanzen mit verbesserter Trockentoleranz generiert werden sollen. Erste Versuche wollen die Forscher an Kartoffeln und Zuckerrüben durchführen.

Quelle:
Maierhofer, T. et al. (2014): Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid. In: Sci. Signal., Vol. 7, Issue 342, p. ra86, (9. September 2014), DOI: 10.1126/scisignal.2005703.

Maierhofer, T. et al. | Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie