Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht an für tanzende und singende Fliegen

26.05.2014

Wissenschaftler des Instituts für Molekulare Pathologie (IMP) entwickeln neue Methode, um die Aktivität bestimmter Hirnregionen in bewegten Fliegen zu studieren.

Andrew Straw und sein Team vom IMP entwickelten gemeinsam mit Kollegen der TU Wien und aus den USA eine spezielle Vorrichtung, mit der sie Licht- oder Wärmelaserstrahlen gezielt auf bestimmte Körperregionen von bewegten Fliegen richten können.


FlyMAD-Vorrichtung, in der ein Laserstrahl gezielt auf eine Fliege in Bewegung gerichtet wird.

Matt Staley und Dan Bath, JFRC, HHMI


Eine männliche Taufliege spreizt einen Flügel ab und erzeugt damit einen "Gesang", nachdem die entsprechenden Neuronen aktiviert wurden.

Dan Bath, JFRC, HHMI

Die als FlyMAD bezeichnete Anordnung erlaubt es den Forschern, mit einer zeitlich verbesserten Auflösung die Aktivität von Hirnzellen in den Tieren zu untersuchen. Straw konnte mit FlyMAD neue Erkenntnisse zum Balzverhalten der Fliegen gewinnen. Die Ergebnisse der Studie sind in der aktuellen Ausgabe des Wissenschaftsjournals Nature Methods nachzulesen (doi 10.1038/nmeth.2973).

Die Taufliege, Drosophila Melanogaster, ist ein bewährter Modellorganismus für die Erforschung bestimmter Abläufe im Gehirn. Bis vor kurzem war es allerdings nicht möglich, die Aktivität von Zellen im Gehirn bewegter Fliegen gezielt zu beeinflussen. Diese Hürde hat Straw mit seiner aktuellen Arbeit nun überwunden.

Schnelles Ein-und Ausschalten von Neuronen in bewegten Fliegen

Straw und seine Mitarbeiter sind daran interessiert, grundlegende Mechanismen im Fliegengehirn aufzuklären. Sie untersuchen, wie Nervenzellen (Neuronen) im Gehirn vernetzt sind und wie sie komplexe Verhaltensabläufe - beispielsweise das Balzverhalten - kontrollieren. Um das Zusammenwirken der Neuronen in Fliegen besser zu verstehen, entwickelte Straw mit seinem Team FlyMAD („Fly Mind Altering Device“), einen ausgeklügelten Apparat, der die Bewegung von Fliegen mit einer Videokamera erfasst.

FlyMAD ermöglicht es, die Position mehrerer bewegter Fliegen gleichzeitig aufzuzeichnen und bestimmte Körperregionen dieser Tiere gezielt mit hochfokussiertem Laserlicht zu bestrahlen. Straw und seine Kollegen konnten FlyMAD so mit den innovativen und sensiblen Methoden der Optogenetik und Thermogenetik kombinieren und gezielt in Abläufe im Fliegenhirn eingreifen.

Das Anwenden thermogenetischer Methoden erlaubt es den Forschern, mit genetisch veränderten, temperatursensitiven Fliegen zu arbeiten. Bei der Bestrahlung mit Infrarotlicht und der damit einhergehenden Erwärmung auf 30 Grad Celsius prägen diese Tiere bestimmte Merkmale aus, bei einer Temperatur von 24 Grad Celsius oder weniger jedoch nicht. Im Vergleich zu herkömmlichen Methoden arbeitet FlyMAD mit einer stark verbesserten zeitlichen Auflösung. Das Aktivieren oder Unterdrücken bestimmter Neuronen durch den Infrarotstrahl und die damit einhergehenden Veränderungen im Verhalten der Tiere benötigen nur den Bruchteil einer Sekunde.

Auch durch gezielte Bestrahlung mit sichtbarem Licht können die Forscher eine bestimmte Merkmalsausprägung in den Tieren hervorrufen. FlyMAD stellt somit eine absolute Neuerung für die Fliegenforschung dar, da bisher die Optogenetik auf die Arbeit mit Mäusen beschränkt war.

Neues zum Balzverhalten der Fliegen

Straw und seine Mitarbeiter testeten FlyMAD, indem sie schon bekannte Reaktionen bestimmter genetisch veränderter Fliegen auf Licht und Wärme untersuchten. Diese Versuche zeigten, dass die neue Methode gut funktioniert. Anschließend wendeten die Forscher FlyMAD für neue Fragestellungen an. Sie untersuchten in einem thermogenetischen Ansatz erneut spezielle Neuronen, die sie in früheren Experimenten als wichtige Elemente für den Balzgesang der Fliegen identifiziert hatten. Durch die bessere zeitliche Auflösung der neuen Methode konnten die Forscher die Aktivität von Neuronen klarer zuordnen. So konnte nachgewiesen werden, dass ein bestimmter Neuronentyp im Fliegenhirn für langanhaltendes Balzverhalten verantwortlich ist, während andere Zellen den Balzgesang steuern. Im Experiment äußerte sich das zum Beispiel in der Form, dass die Männchen nach thermischer Stimulation versuchten, ein Fliegenimitat aus Kunststoff zu begatten. Außerdem fingen sie an zu „singen“, indem sie ihre Flügel vibrieren ließen.

FlyMAD erlaubt Kombination von Optogenetik und Thermogenetik

In Zukunft möchte Straw Experimente durchführen, bei denen Fliegen durch Licht und Wärme gleichzeitig aktiviert werden – das ist mit FlyMAD möglich. Dadurch könnten verschiedene genetische Elemente in ein und derselben Fliege an-und ausgeschalten werden. „Das wäre eine fantastische Möglichkeit, um die unterschiedlichsten Fragestellungen beantworten zu können. So könnten wir mit FlyMAD beispielsweise im Netzwerk der Neuronen untersuchen, in welcher Reihenfolge Zellen in einer Signalkaskade angeordnet sind“, ist Straw begeistert von den möglichen Anwendungen seiner Arbeit. Ist das Fliegengehirn einmal besser verstanden, kann man die daraus gewonnenen Erkenntnisse auch auf die Zell-Vernetzungen im Säugerhirn übertragen.

Originalpublikation
Daniel E. Bath, John R. Stowers, Dorothea Hörmann, Andreas Poehlmann, Barry J. Dickson and Andrew D. Straw. FlyMAD: Rapid thermogenetic control of neuronal activity in freely-walking Drosophila. Nature Methods, doi 10.1038/nmeth.2973, 2014

Illustrationen
Abbildungen zur unentgeltlichen Verwendung im Zusammenhang mit dieser Aussendung finden Sie auf der IMP-Website unter:
www.imp.ac.at/pressefoto-flymad

Über Andrew Straw
Andrew Straw studierte Biologie in Los Angeles, USA, und erhielt 2004 den PhD für seine Dissertation auf dem Gebiet der Neurobiologie in Adelaide, Australien. Nach seiner langjährigen Arbeit als Postdoc und Senior Postdoc am Caltech in Pasadena, USA, wurde er dort 2010 als Senior Research Fellow angestellt. Seit 2010 ist Straw am IMP in Wien als Research Fellow tätig und leitet eine eigene Arbeitsgruppe. Die Forschung von Andrew Straw wird teilweise mit einem Starting Grant des Europäischen Forschungsrats ERC und einer Förderung vom Wiener Wissenschafts-, Forschungs- und Technologiefonds finanziert.

Über das IMP
Das Forschungsinstitut für Molekulare Pathologie betreibt in Wien biomedizinische Grundlagenforschung und wird dabei maßgeblich von Boehringer Ingelheim unterstützt. Mehr als 200 ForscherInnen aus 37 Nationen widmen sich der Aufklärung grundlegender molekularer und zellulärer Vorgänge, um komplexe biologische Phänomene im Detail zu verstehen und Krankheitsmechanismen zu entschlüsseln.

Wissenschaftlicher Kontakt:
Andrew Straw, PhD
straw@imp.ac.at

Pressekontakt:
Dr. Heidemarie Hurtl
IMP Communications
+43 1 79730 3625
hurtl@imp.ac.at

Mag. Evelyn Devuyst, MAS
+43 1 79044 3626
evelyn.devuyst@imba.oeaw.ac.at

DI Elena Bertolini, MA
+43 1 79730 3824
elena.bertolini@imba.oeaw.ac.at

Weitere Informationen:

http://www.imp.ac.at/pressefoto-flymad

Dr. Heidemarie Hurtl | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Balzverhalten Forschern Gehirn IMP Licht Nature Neuronen Optogenetik Pathologie Senior Zellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten