Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Großer Fischzug im „DNA-Teich“

14.10.2014

Forscher des Leibniz-Instituts für Zoo- und Wildtierforschung (IZW) um Alex Greenwood publizieren in PLOS ONE einen simplen Weg, um das Erbgut einer Lebensform aus dem Gemisch von Genomen mehrerer Organismen herauszuangeln.

Welcher Virus plagt den Elefanten? Welcher Bakterien-Typ löst schwere Lungenerkrankungen bei Europäischen Feldhasen aus? Molekularbiologische Analysen von Gewebeproben stellen Forscher immer wieder vor das gleiche Problem: Wie fischt man gezielt nur das Genom eines Krankheitserregers aus dem Erbgut-Gemisch des Patienten und seiner mikrobiellen Mitbewohner? „Sehr einfach“, sagt Alex Greenwood vom Leibniz-Institut für Zoo- und Wildtierforschung (IZW) in Berlin.


Selbst aus Knochen von Museumstieren lässt sich das Erbgut rekonstruieren.

Fotos: IZW/Daniel Zupanc, CERoPath

„Wir bieten dem aufbereiteten DNA-Gemisch eine kurze einzelsträngige Basensequenz quasi als Wurm an. Darauf ‘beißt‘ nicht nur die komplementäre Sequenz an, sondern nach und nach viele weitere angrenzende Abschnitte.“ Es bedarf nicht einmal einer neuen Methode dafür. Die sogenannte „Hybridisation Capture Technik“ bietet bereits alles, was nötig ist. Lediglich auf die anschließende Datenanalyse kommt es an.

Durch Zufall entdeckte Greenwoods Doktorand Kyriakos Tsangaras den zusätzlichen Nutzen von Hybridisation Capture. Diese Technologie basiert auf winzigen magnetischen Kügelchen, an die kurze zielspezifische Sequenzen von wenigen Basenpaaren (Oligonucleotide) gebunden werden.

Werden die so bestückten Kügelchen nun in einen Proben-Mix aus einzelsträngigen DNA-Fragmenten gegeben, docken nur die gesuchten komplementären Sequenzen an und kurze doppelsträngige DNA-Abschnitte entstehen. Mit einem Magneten werden die Kügelchen nun wieder aus der Probe gezogen und nicht angedockte Fragmente abgespült. Dann werden die kurzen Doppelstränge von den Magneto Beads gelöst und sequenziert.

Tsangaras wollte eigentlich nur eine bestimmte Sequenz der in Mitochondrien enthaltenen DNA verschiedener südostasiatischer Nagetiere vergleichen. Dafür setzte er eine rund tausend Basenpaare lange Sequenz zum Einfangen (Capturing) von DNA ein. „Ja, wir haben die Sequenz“, berichtete er anschließend Greenwood. „Aber noch sehr viel mehr!“

Die Analyse der Sequenzen und der Abgleich mit Referenzdaten ergab, dass er das komplette Mitochondrien-Genom eines Nagers aus dem „DNA-Teich“ gefischt hatte. Das ergibt überhaupt keinen Sinn, war Greenwoods erster Gedanke. Kontrollversuche brachten jedoch das gleiche verblüffende Ergebnis. Greenwood bat Tom Gilbert vom Center of GeoGenetics in Kopenhagen bei der Analyse des Phänomens um Mithilfe. Verschiedene Theorien wurden aufgestellt und wieder verworfen. Übrig blieb das Naheliegenste – es musste eine Kettenreaktion gegeben haben.

„Bildlich gesprochen biss zuerst der gesuchte Fisch an – die komplementäre Oligonucleotidsequenz dockte an. Dann biss ihm ein zweiter quasi in den Schwanz, diesem ein dritter und so weiter.“ In der Probe hatte es vor der Aufbereitung einmal intakte Doppelhelices gegeben, die nun in Fragmenten mit unterschiedlichen Längen vorlag. Da einzelsträngige DNA die Fähigkeit hat, sich spontan mit dem komplementären Strang zu verbinden, passierte einfach folgendes: Nachdem das komplementäre Fragment aus Strang A an den „Köder“ gebunden hatte, heftete sich nun das angrenzende Gegenstück aus Strang B an das heraushängende Ende. Daran wieder eines von A, dann von B, von A... und so weiter.

Das ist so simpel und im Grunde schon Schulbuchwissen: Warum hat das zuvor niemand beobachtet? „Wer nur Tausend Basenpaare sucht, schaut meist nur nach, ob er sie gefunden hat. Alles was außerdem entsteht, wird meist als Schrott abgetan“, sagt Greenwood. „CapFlank“ nannten die Autoren diesen „Beifang“-Prozess, bei dem ein einzelnes DNA-Fragment in einer Kettenreaktion überlappende benachbarte Sequenzen einfängt. Mit einem ganz kleinen Fragment lässt sich also sehr viel genetische Information gewinnen.

CapFlank eröffnet ganz neue Möglichkeiten, zum Beispiel bei der genetischen Analyse von Krankheitserregern. „Wir können kurze konservierte Gensequenzen nutzen, um das Genom (oder zumindest große Teile) von krankheitserregenden (Pathogenen)-Varianten, etwa von Influenzaviren, oder ganz neuen Erregern zu gewinnen“, erklärt Greenwood. Sein Team will nun zunächst nach einfachen und gut-beschriebenen DNA-Viren wie dem Elefanten-Herpes-Virus angeln.

Selbst für stark fragmentierte alte DNA, etwa aus Knochen von Museumstieren, die häufig von Mikroben- und menschlicher Erbsubstanz stark verunreinigt ist, eignet sich die Methode, wie Greenwoods Mitarbeiter an Proben ausgestopfter Museumskoalas zeigen konnten. Am besten funktioniert CapFlank allerdings bei frischer DNA. Von dem Darmbakterium Escherichia coli aus einer menschlichen Urinprobe fischten die Forscher 90 Prozent des Genoms am Stück heraus.

Publikation:
Tsangaras K, Wales N, Sicheritz-Pontén T, Rasmussen S, Michaux J, Ishida Y, Morand S, Kampmann M, Gilbert MTP, Greenwood AD (2014): Hybridization capture using short PCR products enriches small genomes by capturing flanking sequences (CapFlank). PLOS ONE, PONE-D-14-23770R2 10.1371/journal.pone.0109101

Kontakt:
Leibniz-Institut für Zoo- und Wildtierforschung (IZW)
in Forschungsverbund Berlin e.V.
Alfred-Kowalke-Str. 17
10315 Berlin
Presseanfragen:
Steven Seet, +49 30 5168 125, seet@izw-berlin.de
Anke Schumann, +49 30 5168 127, schumann@izw-berlin.de
Wissenschaftliche Fragen:
Prof. Alex D. Greenwood, +49 30 5168 255, greenwood@izw-berlin.de

Weitere Informationen:

http://www.izw-berlin.de

Gesine Wiemer | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Salmonellen als Medikament gegen Tumore
23.10.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Add-ons: Was Computerprogramme und Proteine gemeinsam haben
23.10.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie