Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Evolution mit der molekularen Schere untersucht

16.06.2016

Einen wichtigen Mechanismus der Evolution von Pflanzengenomen haben Forscher am Karlsruher Institut für Technologie (KIT) aufgeklärt: Anhand der Modellpflanze Ackerschmalwand untersuchten sie den Ursprung tandemartig wiederholter Sequenzen in der DNA und stellten fest, dass solche Sequenzen dann auftreten, wenn die beiden DNA-Stränge in deutlichem Abstand voneinander gebrochen werden. Die Wissenschaftler setzten für ihre Experimente die „molekulare Schere“ CRISPR/Cas ein. In der Zeitschrift PNAS stellen sie die Ergebnisse vor. (DOI: 10.1073/pnas.1603823113)

Die Evolution der Genome basiert auf Mutationen, das heißt Veränderungen des Erbguts, die an die Nachkommen weitergegeben werden. Dazu gehören Verdopplungen vorhandener Sequenzen in der DNA (Desoxyribonukleinsäure), dem Träger der genetischen Information. So können in der Evolution größere Genome mit mehr genetischer Information entstehen.


Zellkern von Arabidopsis thaliana (Ackerschmalwand), der die genetische Information enthält.

Abbildung: Holger Puchta, KIT

Verschiedene Mechanismen können zu solchen Verdopplungen führen. In Pflanzengenomen finden sich häufig kürzere DNA-Sequenzen, die tandemartig dupliziert sind. Wie solche Sequenzen entstehen, haben nun Forscher am Botanischen Institut II des KIT herausgefunden.

„Die DNA besteht ja aus zwei gegenläufigen Strängen. Unsere Ergebnisse zeigen, dass die Reparatur von deutlich voneinander entfernten Einzelstrangbrüchen in den beiden gegenläufigen Strängen eine wichtige Rolle bei der Entstehung von Duplikationen in Pflanzengenomen spielt“, erklärt Institutsleiter Professor Holger Puchta.

Wie die Wissenschaftler bei Untersuchungen an der Modellpflanze Ackerschmalwand (Arabidopsis thaliana) feststellten, führten jeweils zwei solche Einzelstrangbrüche und deren aufeinander abgestimmte Reparatur neben Deletionen, das heißt Auslassungen, regelmäßig zu tandemartigen Duplikationen von kürzeren Sequenzen nahe an den Bruchstellen.

Die Forscher führten die Einzelstrangbrüche gezielt in verschiedenen Regionen des Genoms und in verschiedenen Abständen voneinander herbei und analysierten die Ergebnisse der Reparatur durch DNA-Sequenzierung.

Um die Einzelstrangbrüche punktgenau zu erzeugen, setzten die Karlsruher Forscher eine neuartige „molekulare Schere“ ein – eine spezielle Form des CRISPR/Cas-Systems. „Bisher konnten wir nur mit molekularen Scheren arbeiten, die gleichzeitig beide Stränge schneiden und so einen Doppelstrangbruch in der DNA erzeugen. Mit dem modifizierten CRISPR/Cas System können wir nun erstmals eine Schere einsetzen, die nur einen Strang schneidet. So ist es jetzt möglich, die Reparatur solcher Schäden in der DNA im Detail zu untersuchen“, erläutert Puchta.

Die Bezeichnung CRISPR/Cas steht für einen bestimmten Abschnitt auf der DNA (CRISPR – Clustered Regularly Interspaced Short Palindromic Repeats) sowie ein Enzym (Cas), das diesen Abschnitt erkennt und die DNA genau dort schneiden kann. So lassen sich Gene einfach, schnell und präzise entfernen, einfügen oder austauschen.

Holger Puchta war in der Vergangenheit der erste Wissenschaftler überhaupt, der solche molekularen Scheren bei Pflanzen einsetzte. Bei jenen Untersuchungen zeigte er nicht nur, dass sie sich als Werkzeug für gezielte Genomveränderungen nutzen lassen, sondern fand auch heraus, dass Doppelstrangbrüche zu größeren Veränderungen in Pflanzengenomen führen können.

In der neuen Untersuchung, vorgestellt in der Zeitschrift Proceedings of the National Academy of Sciences of the United States of America (PNAS), zeigen die Forscher vom Botanischen Institut II des KIT nun, dass auch die Anwesenheit mehrerer Einzelstrangbrüche in der DNA zu Genomveränderungen führen kann. Solche Einzelstrangbrüche kommen unter natürlichen Bedingungen bei Pflanzen häufig vor, vor allem dann, wenn sie UV-Licht ausgesetzt sind. „Der neu entdeckte Mechanismus ist daher für das Verständnis der Evolution von Pflanzengenomen von großer Wichtigkeit“, sagt Holger Puchta.

Simon Schiml, Friedrich Fauser, and Holger Puchta: Repair of adjacent single-strand breaks is often accompanied by the formation of tandem sequence duplications in plant genomes. Proc. Natl. Acad. Sci. USA, 2016. DOI: 10.1073/pnas.1603823113

Weiterer Kontakt: Monika Landgraf, Pressesprecherin, Leitung Presse, Tel.: +49 721 608-48126, Fax: +49 721 608-43658, monika.landgraf@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie