Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Enzyme bei der Arbeit: Aufspaltung widerspenstiger Cellulose

12.10.2017

TU Graz-Forschende beobachten Enzyme bei der Aufspaltung von Cellulose und wollen damit unter anderem die Produktion von Biokraftstoffen unterstützen. Ihre Ergebnisse publizieren sie nun in Nature Communications.

Kraftstoffe aus Biomasse werden immer wichtiger. Abgesehen von Biomethan können sie aber noch nicht effizient, kostengünstig und nachhaltig produziert werden, der technische und finanzielle Aufwand ist derzeit noch zu hoch. „Mitschuld“ daran trägt Cellulose, ein Polysaccharid und Pflanzenbestandteil, der nicht wasserlöslich und damit schwer zu verarbeiten ist.


Wie die Forschenden den Prozess der Celluloseaufspaltung an der Oberfläche beobachtet und dokumentiert haben, ist aktuell in Nature Communications veröffentlicht.

© Lunghammer - TU Graz


Hydrolytische Enzyme spalten Cellulose besser auf und ebnen damit ein Stück den Weg zu konkurrenzfähigen Biokraftstoffen.

© Lunghammer - TU Graz

Oxidative Enzyme

Im Normalfall verwenden Bioraffinerien – so wie es auch in natürlichen Abbauprozessen geschieht – einen Mix aus hydrolytisch aktiven, also Wasser benötigenden Enzymen für den Abbau von pflanzlichen Rohstoffen.

Vor einiger Zeit entdeckte man oxidative Enzyme, die unter Zuhilfenahme von Sauerstoff arbeiten und gemeinsam mit den hydrolytischen Enzymen Cellulose bereits wesentlich besser spalten können. Wie diese oxidativen Enzyme – genannt LPMOs (lytic polysaccharide monooxygenase) – aber genau arbeiten, war nicht bekannt. An genau diesem Punkt setzten die Forschenden der TU Graz an.

Enzyme unter dem Rasterkraftmikroskop

Mittels Rasterkraftmikroskopie konnten die Forschenden nun erstmalig die Enzyme bei ihrer aufspaltenden Arbeit an der Oberfläche der Cellulosepartikel beobachten und einen direkten Nachweis ihrer Aktivität erbringen. Bereits seit mehreren Jahren arbeitet das Institut für Biotechnologie und Bioprozesstechnik dafür eng mit dem Grazer Zentrum für Elektronenmikroskopie zusammen.

Für die aktuell in Nature Communications publizierte Studie wurde in einem ersten Schritt das schon länger bekannte, hydrolytisch aktive Enzym Trichoderma reesei CBH I beobachtet. Es setzt sich an der Oberfläche eines Partikels fest, wandert die Polysaccheridketten entlang und spaltet Schritt für Schritt immer mehr kleine Teile davon ab.

In einem weiteren Schritt wurde beobachtet, wie sich das Verhalten der Enzyme veränderte, wenn LPMOs beigemengt wurden. Hier konnten die Forschenden nachweisen, dass die LPMOs einerseits mehr Bindestellen für die hydrolytisch aktiven Enzyme an der Oberfläche erzeugen und andererseits die Enzymdynamik an der Oberfläche wesentlich zunahm.

Ein Bild sagt mehr als tausend Worte

Mit dieser Studie will man einerseits auf Grundlagenebene zum besseren Verständnis dieser Vorgänge beitragen und andererseits in einem weiteren Schritt die Herstellung von Biokraftstoffen vereinfachen. „Üblicherweise untersucht man in der Chemie lösliche Produkte, misst beispielsweise die Konzentration, um etwas über die Reaktion zu lernen.

Das ist aber wie in diesem Fall bei einer Reaktion an der Oberfläche eines Festkörpers nicht praktikabel. Wir wollten den Schritt davor, also den Prozess der Celluloseaufspaltung, an der Oberfläche beobachten und dokumentieren“, so Manuel Eibinger, Erstautor der Studie und Postdoktorand am Institut für Biotechnologie und Bioprozesstechnik.

Bernd Nidetzky, Leiter des Instituts für Biotechnologie und Bioprozesstechnik der TU Graz: „Man könnte hier das Sprichwort bedienen: Ein Bild sagt mehr als tausend Worte. Wir wollten mit dieser Studie eine zeitlich aufgelöste Dokumentation der Vorgänge erstellen. Und das ist uns nun gelungen.“

Zur Publikation in Nature Communications:
Single molecule study of oxidative enzymatic deconstruction of cellulose. Manuel Eibinger, Jürgen Sattelkow, Thomas Ganner, Harald Plank & Bernd Nidetzky. Nature Communications. DOI 10.1038/s41467-017-01028-y. https://www.nature.com/articles/s41467-017-01028-y

An der TU Graz ist dieses Forschungsthema im Field of Expertise "Human & Biotechnology" verankert, einem von fünf strategischen Forschungsschwerpunkten.

Kontakt:
Bernd NIDETZKY
Univ.-Prof.Dipl.-Ing. Dr.techn.
Institut für Biotechnologie und Bioprozesstechnik
Petersgasse 10-12
8010 Graz
Tel.: +43 316 873 8400
E-Mail: bernd.nidetzky@tugraz.at

Manuel EIBINGER
Dipl.-Ing. Dr.techn. BSc
Institut für Biotechonologie und Bioprozesstechnik
Petersgasse 10-12
8010 Graz
Tel.: +43 316 873 8409
E-Mail: m.eibinger@tugraz.at

Weitere Informationen:

https://www.nature.com/articles/s41467-017-01028-y Link zum Paper in Nature Communications

Mag. Susanne Eigner | Technische Universität Graz
Weitere Informationen:
http://www.tugraz.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Biodegradierbare Elektronik
13.10.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Mechanismus für zielgenaue Immunantwort aufgeklärt
13.10.2017 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Kalte Moleküle auf Kollisionskurs

Mit einer neuen Kühlmethode gelingt Wissenschaftlern am MPQ die Beobachtung von Stößen in einem dichten Strahl aus kalten und langsamen dipolaren Molekülen.

Wie verlaufen chemische Reaktionen bei extrem tiefen Temperaturen? Um diese Frage zu beantworten, benötigt man molekulare Proben, die gleichzeitig kalt, dicht...

Im Focus: Astronomen entdecken ungewöhnliche spindelförmige Galaxien

Galaxien als majestätische, rotierende Sternscheiben? Nicht bei den spindelförmigen Galaxien, die von Athanasia Tsatsi (Max-Planck-Institut für Astronomie) und ihren Kollegen untersucht wurden. Mit Hilfe der CALIFA-Umfrage fanden die Astronomen heraus, dass diese schlanken Galaxien, die sich um ihre Längsachse drehen, weitaus häufiger sind als bisher angenommen. Mit den neuen Daten konnten die Astronomen außerdem ein Modell dafür entwickeln, wie die spindelförmigen Galaxien aus einer speziellen Art von Verschmelzung zweier Spiralgalaxien entstehen. Die Ergebnisse wurden in der Zeitschrift Astronomy & Astrophysics veröffentlicht.

Wenn die meisten Menschen an Galaxien denken, dürften sie an majestätische Spiralgalaxien wie die unserer Heimatgalaxie denken, der Milchstraße: Milliarden von...

Im Focus: Additive Fertigung revolutioniert die Produktionstechnik

Additive Verfahren sind das große Zukunftsthema der Produktionstechnik. Die Anwendungen reichen von der Herstellung von Maschinenteilen aus Metall bis hin zum 3D-Druck von Beton. Zwei internationale Fachkonferenzen, die derzeit an der Technischen Universität München (TUM) stattfinden, verdeutlichen die Bandbreite der Additiven Hightech-Fertigung und vermitteln Einblicke in die vielfältigen an der TUM vorhandenen Expertisen.

Komplexe Metallteile, die nicht von einer spezialisierten Maschine gefräst, sondern mit einem Laser sukzessive in Windeseile aus Metallpulver aufgebaut werden;...

Im Focus: Mit dem Laser durchs Gestein: Verfahren für Bohrungen in großer Tiefe senkt Kosten der Geothermie

Der Einsatz regenerativer Energien umfasst nicht nur die Erzeugung von Strom aus Sonne, Wind, Wasserkraft oder Biomasse, sondern auch von Geothermie zur Gewinnung von Wärme, Kälte oder Strom durch Kraft-Wärme-Kopplung. Besonders ertragreich sind Geothermiebohrungen in tieferen Schichten der Erdkruste. Doch mit zunehmender Tiefe steigen die Kosten der Bohrungen durch den Verschleiß der Bohrwerkzeuge und niedrige Vortriebsraten überproportional – und damit auch das wirtschaftliche Risiko.

Das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen entwickelt gemeinsam mit Partnern im BMWi-geförderten Forschungsprojekt »LaserJetDrilling«...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

bionection 2017 erstmals in Thüringen: Biotech-Spitzenforschung trifft in Jena auf Weltmarktführer

13.10.2017 | Veranstaltungen

Tagung „Energieeffiziente Abluftreinigung“ zeigt, wie man durch Luftreinhaltemaßnahmen profitieren kann

13.10.2017 | Veranstaltungen

Windenergieanlagen - der Baugrund als Fundament und Basis!

13.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IVAM-Produktmarkt präsentiert intelligente Medizintechnik der Zukunft auf der COMPAMED

13.10.2017 | Messenachrichten

DRIVE-E 2017: Angetrieben von der Zukunft

13.10.2017 | Förderungen Preise

bionection 2017 erstmals in Thüringen: Biotech-Spitzenforschung trifft in Jena auf Weltmarktführer

13.10.2017 | Veranstaltungsnachrichten