Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine kleine Veränderung mit großen Folgen

14.12.2016

Coccolithophoriden, einzelliges Phytoplankton, das eine Schlüsselrolle für das Klima auf unserem Planeten spielt, könnte im Ozean der Zukunft seine Konkurrenzfähigkeit verlieren. In einem Feldexperiment, das die Folgen der Ozeanversauerung auf die Coccolithophoride Emiliania huxleyi in ihrer natürlichen Lebensgemeinschaft untersucht, war diese Art nicht mehr in der Lage, Blüten zu bilden. Aus seinen Beobachtungen schließt ein Team von Forschenden unter Leitung des GEOMAR, dass Wechselwirkungen innerhalb des Nahrungsnetzes eine schwache physiologische Reaktion so weit verstärkten, dass sie einen starken Einfluss auf das Ökosystem haben können.

Die Aufnahme von menschengemachten Kohlendioxid (CO2) im Ozean steigert den Säuregehalt des Meerwassers und reduziert die Konzentration von Karbonat-Ionen. Aufgrund dieses Prozesses, der Ozeanversauerung, benötigen kalkbildende Organismen mehr Energie, um Schalen und Skelette aufzubauen.


Drei Exemplare der Kalkalge Emiliania huxleyi, aufgenommen mit dem Rasterelektronenmikroskop.

Foto: Kai Lohbeck, GEOMAR

Viele Studien zeigten, dass dies auch für Emiliania huxleyi gilt, dem häufigsten und produktivsten kalkbildenden Organismus der Weltmeere. Setzt man diese einzellige Alge in kontrollierten Labor-Experimenten saureren Lebensbedingungen aus, dann sinken ihre Wachstums- und Kalkbildungsraten geringfügig. Auch nach mehr als zweitausend Generationen unter Ozeanversauerung bleibt diese Reaktion bis zu einem gewissen Grad erhalten.

Dies lässt vermuten, dass eine Anpassung durch Evolution die negativen Auswirkungen der Ozeanversauerung nicht komplett aufheben kann. Aber was dies für die Fähigkeit der Alge bedeutet, ihre Konkurrenzfähigkeit in ihrem natürlichen Lebensumfeld aufrecht zu erhalten, wenn der Ozean zunehmend saurer wird, war bis jetzt unklar.

Um diese Frage zu beantworten, setzte ein Team von Wissenschaftlerinnen und Wissenschaftlern unter Leitung des GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel die KOSMOS-Experimentier-Anlage ein (KOSMOS: Kiel Off-Shore Mesocosms for Ocean Simulations). Im Rahmen der Forschungsprojekte SOPRAN (Surface Ocean Processes in the Anthropocene) und BIOACID (Biological Impacts of Ocean Acidification), installierten sie das KOSMOS-System im Raunefjord an der Westküste Norwegens.

In dieser Region blüht Emiliania huxleyi alljährlich im späten Frühling. Jede der neun KOSMOS-Einheiten schloss etwa 75 Kubikmeter Meerwasser in einem 25 Meter langen Kunststoffschlauch ein. Diese „Riesen-Reagenzgläser“ wurden auf Kohlendioxid-Konzentrationen gebracht, die einem Bereich zwischen heutigen und den für Mitte des nächsten Jahrhunderts prognostizierten Werten entsprachen.

Sechs Wochen lang erfassten Teilnehmerinnen und Teilnehmer der Studie verschiedene Messparameter und entnahmen Proben für weitere Analysen. Herabsinkende Partikel wurden in trichterförmigen Sedimentfallen am unteren Ende der Mesokosmen gesammelt und ebenfalls analysiert.

“Mit Blick auf die eher geringen Änderungen in der Stoffwechsel-Leistung, die Emiliania in vorangegangenen Laborexperimenten zeigte, waren wir davon ausgegangen, dass sie ihre ökologische Nische trotz der Nachteile auch in einem saurer werdenden Ozean beibehalten würde. Was wir aber beobachteten, war eine große Überraschung“, erinnert sich Prof. Ulf Riebesell, Meeresbiologe am GEOMAR und Koordinator der KOSMOS-Experimente.

In den Mesokosmen, die Lebensbedingungen des zukünftigen Ozeans simulierten, war Emiliania nicht mehr in der Lage, eine Blüte zu bilden. Genaue Analysen der Messdaten zeigten, dass Emilianias Niedergang bereits weit vor der Blütephase begann. Ein aufgrund der Versauerung geringfügig vermindertes Zellwachstum führte dazu, dass die Population kontinuierlich schrumpfte. „Als es für Emiliania an der Zeit war, eine Blüte zu bilden, waren nur noch so wenige Zellen vorhanden, dass sie ihre Konkurrenten nicht mehr übertrumpfen konnte“, urteilt Riebesell.

Dass die kalkbildende Alge ihre Konkurrenzfähigkeit verlor, hatte immense Auswirkungen auf das Ökosystem. „Der Stoff-Fluss von organischem Material in die Tiefe war ohne die Blüte stark reduziert“, erklärt Dr. Kai Schulz, Meeres-Biogeochemiker an der Southern Cross University Australien. Emilianias Kalkplättchen bilden einen Ballast für organisches Material und sorgen dafür, dass es zügig in den tiefen Ozean herabsinkt.

„Ohne das Kalk-Gewicht sinken die Aggregate langsamer, und Bakterien haben mehr Zeit, das organische Material in oberen Wasserschichten zu verarbeiten. Daher bleibt mehr CO2, das im organischen Material gebunden ist, an der Oberfläche. Dies reduziert die Fähigkeit des Ozeans, CO2 aus der Atmosphäre aufzunehmen.“

Eine weitere Rückwirkung ergibt sich aus der Tatsache, dass Emiliania eine wichtige Produzentin von Dimethylsulfid ist, eines Gases, dem eine kühlende Wirkung im Klimasystem zugeschrieben wird. Für die Mesokosmen, in denen Emiliania blühte, wurden hohe Konzentrationen dieses Gases verzeichnet. In den Mesokosmen, in denen Bedingungen des zukünftigen Ozeans simuliert wurden, war es jedoch deutlich reduziert. Eine geringere Kohlendioxid-Aufnahme im Ozean und eine niedrigere Produktion des klimakühlenden Dimethylsulfids wirken in die gleiche Richtung: Sie reduzieren die Fähigkeit des Ozeans, die globale Erwärmung abzumildern.

Die Ergebnisse der Studie unterstreichen, wie wichtig es ist, Auswirkungen von Ozeanversauerung in natürlichen Lebensgemeinschaften zu untersuchen. Wenn sich die Stoffwechsel-Leistung eines Organismus auch nur leicht wandelt, kann dies wesentliche Konsequenzen für dessen Durchsetzungsvermögen in seinem natürlichen Umfeld haben, wo er mit anderen Arten konkurriert und Verlusten durch Fraß oder Vireninfektionen ausgesetzt ist. „Wenn Emiliania huxleyi es nicht mehr schafft, ihre wichtige Rolle aufrecht zu erhalten, können andere, möglicherweise nicht-kalkbildende Organismen übernehmen. Das kann einen Regimewechsel mit weitreichenden ökologischen und biogeochemischen Folgen auslösen“, folgert Riebesell.

Originalveröffentlichung:
Riebesell, U., Bach, L.T., Bellerby, R.G.J., Bermudez Monsalve, R., Boxhammer, T., Czerny, J., Larsen, A., Ludwig, A., Schulz: Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification. Nature Geoscience (2016), doi:10.1038/ngeo2854

Unter www.geomar.de/n4895 steht Bildmaterial zum Download bereit. Videofootage auf Anfrage.

Weitere Informationen:

http://www.bioacid.de BIOACID (Biological impacts of Ocean Acidification)
http://sopran.pangaea.de SOPRAN (Surface Ocean Processes in the Anthropocene)

Dr. Andreas Villwock | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik