Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Rezeptor in 3D

06.08.2015

Für den Laien sieht es aus wie eine Wolke, in der blaue Girlanden und geknickte Strohhalme schweben. Für den Experten könnte die Darstellung der Kristallstruktur des aktivierten μ-Opioidrezeptors, der zur Klasse der G-Protein gekoppelten Rezeptoren gehört, ein maßgeblicher Schritt hin zu starken Schmerzmitteln sein, die einerseits höchst effektiv wirken und andererseits so gut wie frei von Nebenwirkungen sind.

Ein internationales Forscherteam, an dem pharmazeutische Chemiker der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) beteiligt sind, hat die dreidimensionale Molekülstruktur in der aktuellen Ausgabe der Fachzeitschrift Nature veröffentlicht.*


Im Bild ist die Kristallstruktur des μ-Opioidrezeptor-Agonist- Komplexes im Aktivzustand zu sehen (orange: Agonist BU72; blau: μ-Opioidrezeptor; türkis: G-Protein imitierender Nanobody).

Grafik: Ralf Kling, FAU

Das Ziel der Arbeitsgruppe, die vom Nobelpreisträger und Stanfordprofessor Brian Kobilka geleitet wird, ist es, zukünftig Wirkstoffe zu entwickeln, die passgenau diesen Rezeptor aktivieren.

Bereits seit Jahrtausenden gehören die Opiate zu den wichtigsten Heilmitteln. Sie werden zur Linderung schwerer und schwerster Schmerzen eingesetzt und sind deshalb für die Gesellschaft von unschätzbarem Wert. Wegen ihrer euphorisierenden und Abhängigkeit erzeugenden Wirkung zeigen Opiate, zu denen auch das Heroin gehört, jedoch auch verheerende Auswirkungen und können im Fall einer Überdosierung zum Tod durch Atemstillstand führen.

Trotz intensiver Forschung ist es bisher nicht gelungen, die Suchtwirkung der Opiate von den segensreichen schmerzstillenden Eigenschaften abzutrennen. So ist die Entwicklung nebenwirkungsfreier Schmerzmittel nach wie vor ein wichtiges Ziel der Pharmaforschung.

Seit einigen Jahren setzen Wissenschaftler ihre Hoffnungen auf das sogenannte strukturbasierte Design von Medikamenten. Dabei muss zuerst die genaue Struktur des Rezeptors bekannt sein, um dann einen Wirkstoff herstellen zu können, der wie ein Puzzleteil am Rezeptor andockt.

Dem internationalen Forscherteam, an dem Prof. Dr. Peter Gmeiner und Dr. Ralf Kling, Lehrstuhl für Pharmazeutische Chemie, mitarbeiten, ist es nun gelungen, die Kristallstruktur des μ-Opioidrezeptors – dem wichtigsten Angriffspunkt für starke Schmerzmittel auf Opiatbasis – dreidimensional darzustellen. Die gerade in der Zeitschrift Nature publizierte hochaufgelöste Kristallstruktur des μ-Opioidrezeptors gibt Anlass zu neuer Hoffnung für die Entwicklung effektiver und sicherer Schmerzmittel der Zukunft.

Ein detailliertes molekulares Verständnis der Wechselwirkung zwischen Wirkstoff und Rezeptor wird als Ausgangspunkt für das strukturbasiertes Design neuartiger Schmerzmittel überaus wertvoll sein. Diese sollen schmerzhemmende Signale erzeugen, die vom Rezeptor durch die Aktivierung des sogenannten G-Proteins ausgehen. Dagegen sollen Reize, die über die Bindung des Proteins β-Arrestin vermittelt werden, blockiert werden. Wirkstoffe dieser Art, die auch „biased ligands“ genannt werden, sind funktionell selektiv, da sie die gewünschte Wirkung auslösen ohne eine Nebenwirkung herbeizuführen.

Das Konzept dieser funktionell selektiven GPCR-Wirkstoffe ist über die Schmerzforschung hinaus mit großen Hoffnungen in der Pharmaindustrie verbunden. Auch in diese Forschungsaktivitäten ist das Team von Prof. Gmeiner involviert. So befasst sich die Arbeitsgruppe im Rahmen einer von den US-amerikanischen National Institutes of Health finanzierten Kooperation, die ebenfalls von Prof. Kobilka, Stanford University, koordiniert wird, mit der Entwicklung neuartiger Wirkstoffe auf der Basis aktueller, hochaufgelöster Rezeptor-Kristallstrukturen. Zudem gibt es an der FAU das Graduiertenkolleg GRK1910, das sich mit der strukturbasierten Erforschung neuer GPCR-Wirkstoffe befasst.

*doi: 10.1038/nature14886

Weitere Informationen für die Medien:
Prof. Dr. Peter Gmeiner
Tel.: 09131/85-24116
peter.gmeiner@fau.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fau.de/

Weitere Berichte zu: Design FAU Kristallstruktur Rezeptor Schmerzmittel Suchtwirkung Wirkstoff Wirkstoffe

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie