Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die "dunkle Materie" im Protein-Universum

24.11.2015

Bioinformatiker der TUM sind Strukturen der dunklen Proteine auf der Spur

Ob Antikörper, Enzym oder Transportstoff: Proteine haben lebenswichtige Funktionen. Zwar können Wissenschaftler die dreidimensionale Struktur vieler Proteine zumindest teilweise aufklären. Doch für viele Protein-Bausteine oder sogar ganze Eiweißmoleküle wurde die Struktur noch nicht bestimmt. Diese "dunklen Proteine" könnten eine Schlüsselrolle für das Verständnis von Krankheiten spielen.


Nicht für alle Proteine ist die dreidimensionale Struktur bekannt. (Foto: petarg/fotolia)

Ein Team internationaler Wissenschaftler mit Beteiligung der Technischen Universität München (TUM) ist dem Geheimnis des "dunklen Proteoms" mit den Methoden der Bioinformatik einen Schritt näher gekommen. Proteinforschung und Biomedizin bilden einen Forschungsschwerpunkt der TUM.

15 Prozent der Masse eines durchschnittlichen Menschen: So groß ist der Anteil aller Proteine, das sogenannte Proteom. Die Eiweißmoleküle übernehmen essentielle Aufgaben im Körper und den Zellen. Sie bringen Stoffwechselprozesse in Gang, helfen bei der Abwehr von Krankheiten und sorgen für den Transport lebenswichtiger Stoffe.

Die dreidimensionale Struktur ist entscheidend für die Funktion dieser Proteine. Doch es existieren Proteine, die sich vollständig oder in bestimmten Bereichen von jeder bisher experimentell nachgewiesenen Struktur unterscheiden. Ihre Struktur kann daher nicht modelliert werden.

Forscher fassen diese Proteine und Protein-Bausteine unter dem Begriff "dunkle Proteine" und in der Gesamtheit als "dunkles Proteom" zusammen, in Anlehnung an die dunkle Materie im Weltall. Bisher war unter anderem noch nicht bekannt, wie viele der Proteine zum dunklen Proteom gehören.

Die Hälfte des Proteoms ist dunkel

Gemeinsam mit der Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Sydney und der Universität Lissabon hat Andrea Schafferhans vom Lehrstuhl für Bioinformatik der TUM (Prof. Burkhard Rost) die Eigenschaften des "dunklen Proteoms" untersucht. Aus verschiedenen Datenbanken filterten die Wissenschaftler dazu Informationen, brachten sie in Verbindung miteinander und werteten die Daten aus.

Die Datenbank "Aquaria", ein Gemeinschaftsprojekt der CSIRO und der TUM, spielte dabei eine wichtige Rolle. Die Webseite ging Anfang 2015 online und bietet allen Forschern die Möglichkeit, sich die 3D-Struktur von Proteinsequenzen berechnen zu lassen. Dabei greift die Datenbank auf bereits vorhandene Strukturen zurück und erstellt das wahrscheinlichste Modell. Mithilfe der Webseite konnten die Forscher erkennen, welche Protein-Strukturen tatsächlich "dunkel" sind.

Das Ergebnis: Die Hälfte des Proteoms aller Lebewesen, deren Zellen einen Zellkern besitzen – wozu auch der Mensch zählt – gehört zum "dunklen Proteom". "Davon wiederum ist knapp die Hälfte strukturell völlig unbekannt", sagt Schafferhans.

Wenig Verwandte, kaum Wechselwirkungen mit anderen Proteinen

Außerdem konnten die Forscher folgende Eigenschaften für die dunklen Proteine bestimmen: Die meisten der "dunklen Proteine" sind kurz, haben nur wenige Interaktionen mit anderen Proteinen, werden häufig ausgeschieden und besitzen nur wenige evolutionäre Verwandte.

Weiterhin stellten die Wissenschaftler fest, dass einige der bisherigen Annahmen über die "dunklen Proteine" falsch waren. So gehören sie mehrheitlich nicht zu den ungeordneten Proteinen. Letztere nehmen erst ihre eigentliche Struktur an, wenn sie eine Funktion erfüllen. In der restlichen Zeit liegen sie in einer anderen Form vor. Auch handelt es sich bei den "dunklen Proteinen" nicht größtenteils um Proteine, die sich in einer Membran befinden. Membranen grenzen Zellbestandteile oder auch gesamte Zellen voneinander ab. Beide Punkte waren bislang Erklärungen dafür, dass die dunklen Proteine schwer strukturell bestimmbar sind.

Mit ihren Ergebnissen, die im  Fachjournal "Proceedings of the National Academy of Sciences" veröffentlicht sind,  haben die Forscher eine wichtige Grundlage geschaffen, um die geheimnisvollen Eiweißmoleküle in Zukunft besser analysieren zu können. Die Forscher wollen außerdem das "dunkle Proteom" mehr in den Fokus der Aufmerksamkeit rücken. Dort könnten Proteine zu finden sein, die eine Schlüsselrolle für die Gesundheit des Menschen spielen.

Hintergrund:
Die TUM verknüpft im Forschungsschwerpunkt Biomedizin Grundlagen- und Anwendungsforschung. Zum Konzept gehören die Forschungsneubauten TUM Center for Functional Protein Assemblies (CPA), das Bayerische Kernresonanzzentrum, das Zentralinstitut für translationale Krebsfoschung der TUM (TranslaTUM) und das Forschungszentrum für Multiple Sklerose der Klaus Tschira-Stiftung. Die MUNICH SCHOOL OF BIOENGINEERING der TUM schafft als Integratives Forschungszentrum die gemeinsame Lehr- und Forschungsplattform für alle einschlägigen, aus den verschiedenen Fakultäten kommenden Aktivitäten des medizinrelevanten Ingenieurwesens einschließlich der bildgebenden Technologien.

Die TUM ist zudem maßgeblich am Exzellenzcluster "Center for Integrated Protein Science Munich" (CIPSM) beteiligt.

Veröffentlichung:
Nelson Perdigãoa et al.: Unexpected features of the dark proteome. Proceedings of the National Academy of Sciences (2015). DOI: 10.1073/pnas.1508380112

Kontakt:
Andrea Schafferhans
Technische Universität München
Lehrstuhl für Bioinformatik, Prof. Burkhard Rost
Tel.: +49 289 17833
andrea.schafferhans@in.tum.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32762/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften