Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Den Synapsen bei der Arbeit zusehen

30.03.2015

Göttinger Forscher beobachten Synapsenaktivität im Gehirn lebender Fruchtfliegen

Wissenschaftler der Universität Göttingen haben mit einer neuen Methode die Aktivität von Nervenzellen im Gehirn lebender Fruchtfliegen beobachtet. Bislang wurden Fragen nach der Synapsenaktivität in der Regel an Gewebepräparationen oder einzelnen, kultivierten Zellen erforscht.


Mikroskopische Aufnahme eines Drosophila-Gehirns (blau). Die Synapsen zweier Typen von Nervenzellen sind grün und rot markiert.

Foto: Universität Göttingen


Mikroskopische Erfassung einer durch einen Duftreiz hervorgerufenen Aktivität der Synapsen einer einzelnen Nervenzelle im Gehirn einer lebenden Fruchtfliege (aktive Synapsen farbig, inaktive weiß).

Foto: Universität Göttingen

Mithilfe hochauflösender Multiphotonen-Mikroskopie konnten die Forscher nun erstmals verfolgen, wie bestimmte Synapsen im intakten Gehirn der Fruchtfliege Drosophila melanogaster auf Duftreize reagieren und wie sie sich verändern, wenn sie diesen Reizen über längere Zeit ausgesetzt sind. Die Ergebnisse sind in der Fachzeitschrift Cell Reports erschienen.

Synapsen sind die Kontaktstellen zwischen den Nervenzellen. Die Göttinger Neurobiologen züchteten Fruchtfliegen, die an ausgewählten Synapsen im Gehirn fluoreszierende Sensorproteine tragen: Diese ändern ihre fluoreszierenden Eigenschaften, wenn die Synapse auf Aktivität ihrer Nervenzelle reagiert.

Die Forscher konnten so genau beobachten, wie die Synapsen reagierten, wenn die Fliege mit Duftreizen konfrontiert wurde. Mehr noch: Waren die Fliegen über längere Zeit einem Apfelduft ausgesetzt, ließen sich spezifische Veränderungen an bestimmten Synapsen des Gehirns erfassen.

„Die Gehirne von Tieren sind plastisch und ermöglichen den Tieren, zu lernen, Gedächtnisse anzulegen und sich wechselnden Umweltbedingungen anzupassen“, erläutert der Leiter der Studie, Prof. Dr. André Fiala vom Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie der Universität Göttingen.

„Wir konnten nun einen methodischen Zugang zum Gehirn eines lebenden Tieres schaffen, um zu beobachten, welche Synapsen sich aufgrund von bestimmten Erfahrungen ändern.“ Die Wissenschaftler hoffen, dass sich durch das gleichzeitige Registrieren der Plastizität einer Vielzahl an Synapsen Prinzipien herausfinden lassen, wie Gehirne gelernte Informationen in sich ständig ändernden komplexen Netzwerken von Nervenzellen anlegen und kodieren.

Originalveröffentlichung: Ulrike Pech et al. Optical Dissection of Experience-Dependent Pre- and Postsynaptic Plasticity in the Drosophila Brain. Cell Reports 2015. Doi: 10.1016/j.celrep.2015.02.065.

Kontaktadresse:
Prof. Dr. André Fiala
Georg-August-Universität Göttingen
Fakultät für Biologie und Psychologie
Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie
Abteilung Molekulare Neurobiologie des Verhaltens
Julia-Lermontowa-Weg 3, 37077 Göttingen
Telefon (0551) 39-177920
E-Mail: afiala@gwdg.de

Weitere Informationen:

http://www.uni-goettingen.de/de/186242.html

Thomas Richter | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie