Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Cpf1: CRISPR-Enzymschere schneidet RNA und DNA

21.04.2016

Wissenschaftler klären Wirkungsweise eines neuen CRISPR-Cpf1-Systems in Bakterien auf und eröffnen damit mögliche weitere Wege für die Editierung von Genen

Wenige Jahre nach ihrer Entdeckung ist die Gen-Schere CRISPR-Cas9 aus der Genetik nicht mehr wegzudenken. Sie ist ein exaktes und vielfältig einsetzbares Werkzeug für die Veränderung von Erbgut unterschiedlicher Organismen. Seitdem arbeiten Forscher weltweit daran, das CRISPR-Cas9-System weiter zu verbessern und es für ihre Zwecke zu optimieren.

Forscher des Berliner Max-Planck-Instituts für Infektionsbiologie, der Universität Umeå in Schweden und des Helmholtz-Zentrums für Infektionsforschung in Braunschweig haben nun entdeckt, dass das CRISPR-assoziierte Protein Cpf1 eine bislang für diese Enzymfamilie einzigartige Eigenschaft besitzt: Es schneidet sowohl RNA als auch DNA. Im Unterschied zu CRISPR-Cas9 kann Cpf1 das Vorläufermolekül der CRISPR-RNA, die sogenannte pre-crRNA, alleine in ein funktionstüchtiges crRNA-Molekül umwandeln.

Die fertige crRNA zeigt Cpf1 dann, wo es die DNA schneiden muss. Das System benötigt also keine weiteren Faktoren und ist damit das einfachste bislang bekannte CRISPR-Immunsystem. Dieses duale Schneidewerkzeug für RNA und DNA könnte künftig möglicherweise auch eingesetzt werden, um im Erbgut mehrere Gene gleichzeitig zu verändern, auch „multiplexing“ genannt.

CRISPR-Cas ist Teil des Immunsystems von Bakterien, mit dem diese sich gegen Viren wehren. In diesem System schneidet das Enzym Cas9 die DNA der Viren an einer Stelle, die von zwei RNA-Molekülen vorgegeben wird – der sogenannten CRISPR RNA (crRNA) und der tracrRNA. Dadurch werden die Erreger außer Gefecht gesetzt.

2011 hat Emmanuelle Charpentier zusammen mit Kollegen entdeckt, dass CRISPR-Cas9 aus dem Enzym Cas9 und zwei RNA-Moleküle besteht, der pre-crRNA und der tracrRNA. Letztere wandelt das Vorläufermolekül in die reife crRNA um. Ein Jahr später demonstrierten die Wissenschaftler, dass Cas9 zu seinem Ziel auf dem DNA-Strang führen. Beide Moleküle lassen sich zudem zu einem einzigen fusionieren.

Seitdem hat CRISPR-Cas9 einen Siegeszug durch die Labore angetreten. Aber nicht nur Wissenschaftler, auch Mediziner hegen große Hoffnungen: Sie wollen die Gen-Schere dazu einsetzen, schwere Erbkrankheiten zu heilen.

„So einfach sich die Wirkungsweise von CRISPR-Cas9 auch anhört, es gibt jedoch einige Feinheiten“, sagt Charpentier, inzwischen Direktorin am Max-Planck-Institut für Infektionsbiologie. Denn bevor die crRNA dem Cas9-Protein den Schnittpunkt auf der DNA zeigen kann, muss sie selbst in ihre endgültige Form gebracht werden: RNA-schneidende Proteine sind notwendig, damit eine ausgereifte und funktionsfähige crRNA entsteht. Eines davon ist die RNase III. Charpentier fand 2011 heraus, dass dieses Enzym zusammen mit der tracrRNA am Reifungsprozess der crRNA beteiligt ist.

Minimalistisches CRISPR-System

Nun haben die Forscher entdeckt, dass der Abwehrmechanismus mancher Bakterien noch einfacher aufgebaut ist als CRISPR-Cas9. Diese besitzen zusätzlich zu Cas9 das Enzym Cpf1 zum Durchtrennen von Fremd-DNA. Die Untersuchungen zeigen nun, dass Cpf1 sowohl RNA als auch DNA schneiden kann. Cpf1 entfernt zunächst einzelne Abschnitte des crRNA-Moleküls und fungiert so als Reife-Protein. Zusätzliche Proteine wie RNase III sind nicht erforderlich. Die fertige crRNA leitet Cpf1 dann zu seinem Zielabschnitt auf der DNA.

Cpf1 hat folglich eine Doppelfunktion: Zunächst macht es die crRNA funktionstüchtig. Dann durchtrennt es die DNA an dem von der crRNA bestimmten Abschnitt. Cpf1 ist darüber hinaus im Gegensatz zu Cas9 nicht auf die Hilfe einer tracrRNA angewiesen, um zu seinem Zielort zu gelangen.

Das System ist damit noch einfacher aufgebaut als CRISPR-Cas9. „CRISPR-Cpf1 funktioniert wie ein „plug and play“-System ohne zusätzliche Komponenten. CRISPR-Cas9 dagegen braucht in seiner natürlichen Umgebung noch einen Assistenten, der das System aktiviert“, erklärt Charpentier.

„Es ist noch nicht klar, ob CRISPR-Cpf1 gegenüber CRISPR-Cas9 Vorteile als Werkzeug für die Gen-Editierung besitzt. Dass die Evolution ein so minimalistisches und trotzdem effektives Abwehrsystem gegen Viren hervorgebracht hat, hat uns aber sehr überrascht“, sagt Charpentier. „Möglicherweise besitzen Bakterien noch weitere – die Suche nach ihnen ist bereits in vollem Gange.“

Ansprechpartner

Prof. Emmanuelle Charpentier, Ph.D.

 
Telefon:+49 30 28460-410

Originalpublikation

 
Ines Fonfara, Hagen Richter, Majda Bratovic, Anaïs Le Rhun & Emmanuelle Charpentier
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.

Prof. Emmanuelle Charpentier, Ph.D. | Max-Planck-Institut für Infektionsbiologie, Berlin
Weitere Informationen:
https://www.mpg.de/10464309/crispr-cpf1

Weitere Berichte zu: Bakterien CRISPR Cas9 DNA-cleaving enzyme Enzym Infektionsbiologie Proteine RNA RNase dna

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Viren ihren Lebenszyklus mit begrenzten Mitteln effektiv sicherstellen
20.02.2017 | Universität zu Lübeck

nachricht Zellstoffwechsel begünstigt Tumorwachstum
20.02.2017 | Veterinärmedizinische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Welt der keramischen Werkstoffe - 4. März 2017

20.02.2017 | Veranstaltungen

Schwerstverletzungen verstehen und heilen

20.02.2017 | Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovative Antikörper für die Tumortherapie

20.02.2017 | Medizin Gesundheit

Multikristalline Siliciumsolarzelle mit 21,9 % Wirkungsgrad – Weltrekord zurück am Fraunhofer ISE

20.02.2017 | Energie und Elektrotechnik

Wie Viren ihren Lebenszyklus mit begrenzten Mitteln effektiv sicherstellen

20.02.2017 | Biowissenschaften Chemie