Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Cpf1: CRISPR-Enzymschere schneidet RNA und DNA

21.04.2016

Wissenschaftler klären Wirkungsweise eines neuen CRISPR-Cpf1-Systems in Bakterien auf und eröffnen damit mögliche weitere Wege für die Editierung von Genen

Wenige Jahre nach ihrer Entdeckung ist die Gen-Schere CRISPR-Cas9 aus der Genetik nicht mehr wegzudenken. Sie ist ein exaktes und vielfältig einsetzbares Werkzeug für die Veränderung von Erbgut unterschiedlicher Organismen. Seitdem arbeiten Forscher weltweit daran, das CRISPR-Cas9-System weiter zu verbessern und es für ihre Zwecke zu optimieren.

Forscher des Berliner Max-Planck-Instituts für Infektionsbiologie, der Universität Umeå in Schweden und des Helmholtz-Zentrums für Infektionsforschung in Braunschweig haben nun entdeckt, dass das CRISPR-assoziierte Protein Cpf1 eine bislang für diese Enzymfamilie einzigartige Eigenschaft besitzt: Es schneidet sowohl RNA als auch DNA. Im Unterschied zu CRISPR-Cas9 kann Cpf1 das Vorläufermolekül der CRISPR-RNA, die sogenannte pre-crRNA, alleine in ein funktionstüchtiges crRNA-Molekül umwandeln.

Die fertige crRNA zeigt Cpf1 dann, wo es die DNA schneiden muss. Das System benötigt also keine weiteren Faktoren und ist damit das einfachste bislang bekannte CRISPR-Immunsystem. Dieses duale Schneidewerkzeug für RNA und DNA könnte künftig möglicherweise auch eingesetzt werden, um im Erbgut mehrere Gene gleichzeitig zu verändern, auch „multiplexing“ genannt.

CRISPR-Cas ist Teil des Immunsystems von Bakterien, mit dem diese sich gegen Viren wehren. In diesem System schneidet das Enzym Cas9 die DNA der Viren an einer Stelle, die von zwei RNA-Molekülen vorgegeben wird – der sogenannten CRISPR RNA (crRNA) und der tracrRNA. Dadurch werden die Erreger außer Gefecht gesetzt.

2011 hat Emmanuelle Charpentier zusammen mit Kollegen entdeckt, dass CRISPR-Cas9 aus dem Enzym Cas9 und zwei RNA-Moleküle besteht, der pre-crRNA und der tracrRNA. Letztere wandelt das Vorläufermolekül in die reife crRNA um. Ein Jahr später demonstrierten die Wissenschaftler, dass Cas9 zu seinem Ziel auf dem DNA-Strang führen. Beide Moleküle lassen sich zudem zu einem einzigen fusionieren.

Seitdem hat CRISPR-Cas9 einen Siegeszug durch die Labore angetreten. Aber nicht nur Wissenschaftler, auch Mediziner hegen große Hoffnungen: Sie wollen die Gen-Schere dazu einsetzen, schwere Erbkrankheiten zu heilen.

„So einfach sich die Wirkungsweise von CRISPR-Cas9 auch anhört, es gibt jedoch einige Feinheiten“, sagt Charpentier, inzwischen Direktorin am Max-Planck-Institut für Infektionsbiologie. Denn bevor die crRNA dem Cas9-Protein den Schnittpunkt auf der DNA zeigen kann, muss sie selbst in ihre endgültige Form gebracht werden: RNA-schneidende Proteine sind notwendig, damit eine ausgereifte und funktionsfähige crRNA entsteht. Eines davon ist die RNase III. Charpentier fand 2011 heraus, dass dieses Enzym zusammen mit der tracrRNA am Reifungsprozess der crRNA beteiligt ist.

Minimalistisches CRISPR-System

Nun haben die Forscher entdeckt, dass der Abwehrmechanismus mancher Bakterien noch einfacher aufgebaut ist als CRISPR-Cas9. Diese besitzen zusätzlich zu Cas9 das Enzym Cpf1 zum Durchtrennen von Fremd-DNA. Die Untersuchungen zeigen nun, dass Cpf1 sowohl RNA als auch DNA schneiden kann. Cpf1 entfernt zunächst einzelne Abschnitte des crRNA-Moleküls und fungiert so als Reife-Protein. Zusätzliche Proteine wie RNase III sind nicht erforderlich. Die fertige crRNA leitet Cpf1 dann zu seinem Zielabschnitt auf der DNA.

Cpf1 hat folglich eine Doppelfunktion: Zunächst macht es die crRNA funktionstüchtig. Dann durchtrennt es die DNA an dem von der crRNA bestimmten Abschnitt. Cpf1 ist darüber hinaus im Gegensatz zu Cas9 nicht auf die Hilfe einer tracrRNA angewiesen, um zu seinem Zielort zu gelangen.

Das System ist damit noch einfacher aufgebaut als CRISPR-Cas9. „CRISPR-Cpf1 funktioniert wie ein „plug and play“-System ohne zusätzliche Komponenten. CRISPR-Cas9 dagegen braucht in seiner natürlichen Umgebung noch einen Assistenten, der das System aktiviert“, erklärt Charpentier.

„Es ist noch nicht klar, ob CRISPR-Cpf1 gegenüber CRISPR-Cas9 Vorteile als Werkzeug für die Gen-Editierung besitzt. Dass die Evolution ein so minimalistisches und trotzdem effektives Abwehrsystem gegen Viren hervorgebracht hat, hat uns aber sehr überrascht“, sagt Charpentier. „Möglicherweise besitzen Bakterien noch weitere – die Suche nach ihnen ist bereits in vollem Gange.“

Ansprechpartner

Prof. Emmanuelle Charpentier, Ph.D.

 
Telefon:+49 30 28460-410

Originalpublikation

 
Ines Fonfara, Hagen Richter, Majda Bratovic, Anaïs Le Rhun & Emmanuelle Charpentier
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.

Prof. Emmanuelle Charpentier, Ph.D. | Max-Planck-Institut für Infektionsbiologie, Berlin
Weitere Informationen:
https://www.mpg.de/10464309/crispr-cpf1

Weitere Berichte zu: Bakterien CRISPR Cas9 DNA-cleaving enzyme Enzym Infektionsbiologie Proteine RNA RNase dna

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops