Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Alzheimer-Fibrille gibt ihre besondere Struktur preis

16.09.2015

Wissenschaftler der Universität Ulm haben nun die molekulare Architektur von Beta-Amyloid-Fibrillen aufgedeckt. Diese fadenförmigen Eiweiß-Ablagerungen im Gehirn sind ein charakteristisches Merkmal der Alzheimer-Krankheit.

Auf der Grundlage von Aufnahmen aus der Kryo-Elektronenmikroskopie konnten die Ulmer Forscher gemeinsam mit einem deutsch-amerikanischen Team die Molekülstruktur von so genannten Aß(1-42)-Fibrillen rekonstruieren, einer besonders schädlichen Variante des Beta-Amyloids.


Rekonstruktiones eines Aß(1-42)-Peptiddimers, unten mit überlagertem Modell in beta-Faltblattstruktur in der Kernregion. Über eine Art Peptidreißverschluss sind die Moleküle miteinander verbunden

Abbildung: Matthias Schmidt; Copyright PNAS


Modell einer Seitenansicht der Fibrillen-Rekonstruktion mit integrieren Modell der zentralen Region, die das „Rückgrat“ der Fibrille bildet.

Abbildung: Matthias Schmidt; Copyright PNAS

Wissenschaftler der Universität Ulm haben die molekulare Architektur von Beta-Amyloid-Fibrillen aufgedeckt. Diese fadenförmigen Eiweiß-Ablagerungen im Gehirn sind ein charakteristisches Merkmal der Alzheimer-Krankheit.

„Man geht heute davon aus, dass die Bildung solcher Amyloid-Fibrillen über mehrere Zwischenstufen einen entscheidenden Beitrag zur Krankheitsentstehung spielt“, erklärt Professor Marcus Fändrich.

Der Leiter des Instituts für Pharmazeutische Chemie an der Universität Ulm und sein Postdoc Dr. Matthias Schmidt haben erstmals – gemeinsam mit einem deutsch-amerikanischen Forscherteam – auf atomarer Ebene die Molekülstruktur von Aß(1-42)-Fibrillen identifiziert. Diese besonders schädliche Variante des Beta-Amyloids spielt auch bei neurodegenerativen Krankheiten wie eben Alzheimer eine Schlüsselrolle.

Zum Einsatz kam dabei ein besonderes mikroskopisches Verfahren, die sogenannte Kryo-Elektronenmikroskopie. Dieses Verfahren sorgt mit Temperaturen niedriger als minus 160° Celsius dafür, dass die tiefgekühlten bioaktiven Moleküle in ihrem natürlichen Umfeld untersucht werden können und nicht erst aufwändig kristallisiert werden müssen.

„Am Rechner haben wir die mikroskopischen Aufnahmen mit Hilfe entsprechender Rekonstruktionssoftware in dreidimensionale Molekülmodelle umgewandelt, um die atomare Architektur der Peptid-Moleküle sichtbar zu machen“, so Schmidt. Der Hintergrund: die gewonnenen Strukturinformationen sollen dabei helfen, die Fibrillenbildung zu erklären.

„Denn die Molekülstruktur beeinflusst natürlich den Ablauf von Aggregationsprozessen. Eine Schlüsselrolle spielen dabei nicht nur unterschiedliche Ladungsverteilungen oder polar wirkende atomare Gruppen, sondern nicht zuletzt das Wechselspiel von hydrophilen und hydrophoben Molekülabschnitten der beteiligten Aminosäuren“, erläutert der Biochemiker Fändrich.

Die Wissenschaftler fanden dabei heraus, dass das Rückgrat der Fibrille aus einer Art Peptidreißverschluss besteht, bei dem jeweils zwei Amyloid-Peptide in Form eines S-förmigen Dimers ineinander greifen. „Interessanterweise fanden wir im Inneren dieser Kernstruktur die hydrophoben Molekülabschnitte und außen die hydrophilen Gruppen, was chemisch gesehen Sinn macht“, so der 43-jährige Wissenschaftler. Die Fibrille besteht somit - vereinfacht gesagt - aus unzähligen solcher vertikal aufeinander geschichteten Dimere.

Mit den neuen Erkenntnissen lassen sich nicht nur bekannte physikalische und chemische Eigenschaften dieser Moleküle erklären, sondern auch biologische Phänomene besser verstehen. So konnte das Forscherteam zeigen, warum Aggregationshemmer besonders gut wirken, wenn sie die hydrophoben Abschnitte der sogenannten C-Termini im Kernbereich der Peptide angreifen.

Sie lieferten zudem Evidenzen dafür, dass die Aß(1-42) Peptidvariante deshalb pathogener ist als das kürzere Peptid Aß(1-40). Bei der längeren Variante ist die Interaktionsfläche der gepaarten Moleküle vergrößert und damit auch die Aggregationsneigung höher. Fändrich und Kollegen konnten zudem eine mögliche Erklärung für bestimmte familiäre Veranlagungen für Alzheimer liefern.

„Innerhalb der von uns gefundenen Struktur konnten wir bestimmte Aminosäuren identifizieren, die die Fibrillenstruktur offensichtlich stören. Sind diese aber im Menschen durch genetische Mutation entfernt, bricht die Krankheit wesentlich früher aus“, berichten die Forscher.

Veröffentlicht wurde die von der Deutschen Forschungsgemeinschaft (DFG) unterstützte Studie in der Fachzeitschrift Proceedings of the National Academy of Sciences of the United States of America (PNAS). Mit DFG-Geldern und Mitteln aus dem Struktur- und Innovationsfond des Landes Baden-Württemberg konnten nun für insgesamt 1,5 Millionen Euro zwei Uni-eigene Kryo-TEM-Geräte angeschafft werden. Eines der Transmissionselektronenmikroskope (TEM) steht am Institut für Pharmazeutische Chemie und das zweite in der Zentralen Einrichtung für Elektronenmikroskopie der Universität Ulm.

„Wir haben die Geräte dieses Jahr in Betrieb genommen und werden alle weiteren Untersuchungen jetzt hier im Haus vornehmen können“, freuen sich die Ulmer Forscher. Die Struktur-Studie entstand in Zusammenarbeit mit Professor Nikolaus Grigorieff (Janelia Research Campus, Howard Hughes Medical Institute, Ashburn Virginia). Eine weitere Autorin der Publikation, Dr. Cordelia Schiene-Fischer, arbeitet an der Martin-Luther Universität Halle-Wittenberg.

Weitere Informationen:
Prof. Dr. Marcus Fändrich; Tel.: 0731 / 50 32750; Email: marcus.faendrich@uni-ulm.de;

Hinweis zur Publikation:
Peptide Dimer Structure in an Aß(1-42) Fibril Visualized with Cryo-EM.
M. Schmidt, A. Rohou, K. Lasker, J. Kant Yadav, C. Schiene-Fischer, M. Fändrich and N. Grigorieff. In: PNAS Proceedings of the National Academy of Sciences of the United States of America; Sept. 2015 doi 10.1073/pnas.1503455112

Weitere Informationen:

http://www.pnas.org/content/early/2015/09/04/1503455112.abstract

Andrea Weber-Tuckermann | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik