Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Alzheimer-Fibrille gibt ihre besondere Struktur preis

16.09.2015

Wissenschaftler der Universität Ulm haben nun die molekulare Architektur von Beta-Amyloid-Fibrillen aufgedeckt. Diese fadenförmigen Eiweiß-Ablagerungen im Gehirn sind ein charakteristisches Merkmal der Alzheimer-Krankheit.

Auf der Grundlage von Aufnahmen aus der Kryo-Elektronenmikroskopie konnten die Ulmer Forscher gemeinsam mit einem deutsch-amerikanischen Team die Molekülstruktur von so genannten Aß(1-42)-Fibrillen rekonstruieren, einer besonders schädlichen Variante des Beta-Amyloids.


Rekonstruktiones eines Aß(1-42)-Peptiddimers, unten mit überlagertem Modell in beta-Faltblattstruktur in der Kernregion. Über eine Art Peptidreißverschluss sind die Moleküle miteinander verbunden

Abbildung: Matthias Schmidt; Copyright PNAS


Modell einer Seitenansicht der Fibrillen-Rekonstruktion mit integrieren Modell der zentralen Region, die das „Rückgrat“ der Fibrille bildet.

Abbildung: Matthias Schmidt; Copyright PNAS

Wissenschaftler der Universität Ulm haben die molekulare Architektur von Beta-Amyloid-Fibrillen aufgedeckt. Diese fadenförmigen Eiweiß-Ablagerungen im Gehirn sind ein charakteristisches Merkmal der Alzheimer-Krankheit.

„Man geht heute davon aus, dass die Bildung solcher Amyloid-Fibrillen über mehrere Zwischenstufen einen entscheidenden Beitrag zur Krankheitsentstehung spielt“, erklärt Professor Marcus Fändrich.

Der Leiter des Instituts für Pharmazeutische Chemie an der Universität Ulm und sein Postdoc Dr. Matthias Schmidt haben erstmals – gemeinsam mit einem deutsch-amerikanischen Forscherteam – auf atomarer Ebene die Molekülstruktur von Aß(1-42)-Fibrillen identifiziert. Diese besonders schädliche Variante des Beta-Amyloids spielt auch bei neurodegenerativen Krankheiten wie eben Alzheimer eine Schlüsselrolle.

Zum Einsatz kam dabei ein besonderes mikroskopisches Verfahren, die sogenannte Kryo-Elektronenmikroskopie. Dieses Verfahren sorgt mit Temperaturen niedriger als minus 160° Celsius dafür, dass die tiefgekühlten bioaktiven Moleküle in ihrem natürlichen Umfeld untersucht werden können und nicht erst aufwändig kristallisiert werden müssen.

„Am Rechner haben wir die mikroskopischen Aufnahmen mit Hilfe entsprechender Rekonstruktionssoftware in dreidimensionale Molekülmodelle umgewandelt, um die atomare Architektur der Peptid-Moleküle sichtbar zu machen“, so Schmidt. Der Hintergrund: die gewonnenen Strukturinformationen sollen dabei helfen, die Fibrillenbildung zu erklären.

„Denn die Molekülstruktur beeinflusst natürlich den Ablauf von Aggregationsprozessen. Eine Schlüsselrolle spielen dabei nicht nur unterschiedliche Ladungsverteilungen oder polar wirkende atomare Gruppen, sondern nicht zuletzt das Wechselspiel von hydrophilen und hydrophoben Molekülabschnitten der beteiligten Aminosäuren“, erläutert der Biochemiker Fändrich.

Die Wissenschaftler fanden dabei heraus, dass das Rückgrat der Fibrille aus einer Art Peptidreißverschluss besteht, bei dem jeweils zwei Amyloid-Peptide in Form eines S-förmigen Dimers ineinander greifen. „Interessanterweise fanden wir im Inneren dieser Kernstruktur die hydrophoben Molekülabschnitte und außen die hydrophilen Gruppen, was chemisch gesehen Sinn macht“, so der 43-jährige Wissenschaftler. Die Fibrille besteht somit - vereinfacht gesagt - aus unzähligen solcher vertikal aufeinander geschichteten Dimere.

Mit den neuen Erkenntnissen lassen sich nicht nur bekannte physikalische und chemische Eigenschaften dieser Moleküle erklären, sondern auch biologische Phänomene besser verstehen. So konnte das Forscherteam zeigen, warum Aggregationshemmer besonders gut wirken, wenn sie die hydrophoben Abschnitte der sogenannten C-Termini im Kernbereich der Peptide angreifen.

Sie lieferten zudem Evidenzen dafür, dass die Aß(1-42) Peptidvariante deshalb pathogener ist als das kürzere Peptid Aß(1-40). Bei der längeren Variante ist die Interaktionsfläche der gepaarten Moleküle vergrößert und damit auch die Aggregationsneigung höher. Fändrich und Kollegen konnten zudem eine mögliche Erklärung für bestimmte familiäre Veranlagungen für Alzheimer liefern.

„Innerhalb der von uns gefundenen Struktur konnten wir bestimmte Aminosäuren identifizieren, die die Fibrillenstruktur offensichtlich stören. Sind diese aber im Menschen durch genetische Mutation entfernt, bricht die Krankheit wesentlich früher aus“, berichten die Forscher.

Veröffentlicht wurde die von der Deutschen Forschungsgemeinschaft (DFG) unterstützte Studie in der Fachzeitschrift Proceedings of the National Academy of Sciences of the United States of America (PNAS). Mit DFG-Geldern und Mitteln aus dem Struktur- und Innovationsfond des Landes Baden-Württemberg konnten nun für insgesamt 1,5 Millionen Euro zwei Uni-eigene Kryo-TEM-Geräte angeschafft werden. Eines der Transmissionselektronenmikroskope (TEM) steht am Institut für Pharmazeutische Chemie und das zweite in der Zentralen Einrichtung für Elektronenmikroskopie der Universität Ulm.

„Wir haben die Geräte dieses Jahr in Betrieb genommen und werden alle weiteren Untersuchungen jetzt hier im Haus vornehmen können“, freuen sich die Ulmer Forscher. Die Struktur-Studie entstand in Zusammenarbeit mit Professor Nikolaus Grigorieff (Janelia Research Campus, Howard Hughes Medical Institute, Ashburn Virginia). Eine weitere Autorin der Publikation, Dr. Cordelia Schiene-Fischer, arbeitet an der Martin-Luther Universität Halle-Wittenberg.

Weitere Informationen:
Prof. Dr. Marcus Fändrich; Tel.: 0731 / 50 32750; Email: marcus.faendrich@uni-ulm.de;

Hinweis zur Publikation:
Peptide Dimer Structure in an Aß(1-42) Fibril Visualized with Cryo-EM.
M. Schmidt, A. Rohou, K. Lasker, J. Kant Yadav, C. Schiene-Fischer, M. Fändrich and N. Grigorieff. In: PNAS Proceedings of the National Academy of Sciences of the United States of America; Sept. 2015 doi 10.1073/pnas.1503455112

Weitere Informationen:

http://www.pnas.org/content/early/2015/09/04/1503455112.abstract

Andrea Weber-Tuckermann | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten