Äußerst selten, aber mehrfach positiv

Einzig das Metal (Indium oder Gallium) entscheidet, welcher Reaktionsweg eingeschlagen wird. Foto: nmcandre/Fotolia

Durch die passende Kombination von einfach negativ geladenen Anionen und neutralen Liganden, einer Art molekularem Stützkorsett, ist es Dr. Martin R. Lichtenthaler aus dem Arbeitskreis von Prof. Dr. Ingo Krossing gelungen, erstmals äußerst seltene und mehrfach positiv geladene kationische Indium-Clusterverbindungen zu isolieren.

Diese Anhäufung mehrerer Atome stellt einen wichtigen Beitrag für das grundlegende Verständnis der Wechselwirkung von Metallatomen auf dem Weg vom isolierten Atom zum Nanopartikel und schließlich zum klassischen Metall dar. Die Ergebnisse hat das Team nun in der Fachzeitschrift „Nature Communications“ veröffentlicht.

75 Prozent der chemischen Elemente sind Metalle. Diese können elementar sein, also ausschließlich aus elektrisch leitenden Metallatomen bestehen. Oder sie liegen als Metall-Komplexverbindung vor, indem ein Metallatom von einer bestimmten Anzahl anderer in Liganden gebundener Atome umgeben ist. Für einen fließenden Übergang zwischen diesen beiden Extremen sorgen Metall-Clusterverbindungen: große Moleküle mit zwei oder mehr direkt miteinander verknüpften Metallatomen, die häufig negativ oder neutral geladen sind, doch sehr selten positiv.

Die Freiburger Wissenschaftler isolierten nun erstmals kationische Indium-Clusterverbindungen mit drei bis vier Indium-Metallatomen. Der Schlüssel zum Erfolg waren schwach koordinierende Anionen. Das sind voluminöse, einfach negativ geladene Anionen, die mit den positiv geladenen Kationen kaum in Wechselwirkung treten. Die Forscher kombinierten diese Anionen mit Chelat-Liganden, die jedes Metallatom in der Clusterverbindung von mindestens zwei Positionen aus umschließen.

Die Ergebnisse haben das Team überrascht, da die mehrfach positiv geladenen Verbindungen aufgrund der ausgeprägten Abstoßung gleichnamig geladener Teilchen eigentlich „explodieren“ sollten. „Ich hätte nie gedacht, dass solch kuriose Clusterverbindungen zugänglich sind“, sagt Krossing. „Aufgrund der dreieckigen Struktur bezeichnen wir die neuen Verbindungen als Bermuda-Cluster.“

Analoge Versuche mit Gallium, dem leichteren „Verwandten“ des Indiums, führten zu anderen Ergebnissen: Gallium bildet unter vergleichbaren Bedingungen keine Clusterverbindungen, sondern einen ungewöhnlichen, zweifach positiv geladenen Metallkomplex. In einer Zusammenarbeit mit der Arbeitsgruppe von Prof. Dr. Stefan Weber wiesen die Forscher bei der hochreaktiven Gallium-Komplexverbindung so genannten Paramagnetismus nach, also ungepaarte Elektronen.

„Für uns ist das ein klarer Befund, dass das Gallium-Atom an der elektronischen Struktur der eingesetzten Liganden nicht unschuldig ist“, sagt Krossing. Die Wissenschaftler sind überzeugt, dass dieser Ansatz eine neue und allgemein anwendbare Route gerade zu den seltenen positiv geladenen Clusterverbindungen aufzeigt, sofern Metallatome und Liganden passend aufeinander abgestimmt werden.

Ingo Krossing hat die Professur für Molekül- und Koordinationschemie am Institut für Anorganische und Analytische Chemie der Universität Freiburg inne. Seine Forschungsschwerpunkte reichen von der Synthese, Charakterisierung und Anwendung ionischer Systeme bis hin zur Entwicklung neuer fundamentaler Konzepte für absolute Brønsted-Aciditäts- und Redoxskalen.

Martin R. Lichtenthaler hat in Krossings Arbeitsgruppe zu einwertigen Gallium-Salzen und deren Anwendung als Katalysatoren in der Olefin-Polymerisation promoviert. Stefan Weber ist Inhaber der Professur für Physikalische Chemie mit dem Schwerpunkt Magnetische Resonanz an der Universität Freiburg. Er entwickelt neue Methoden, um mit der Elektronenspinresonanz und der Kernspinresonanz Fragen aus der Chemie, den Lebens- und den Materialwissenschaften zu beantworten.

Originalpublikation:
Martin R. Lichtenthaler, Florian Stahl, Daniel Kratzert, Lorenz Heidinger, Erik Schleicher, Julian Hamann, Daniel Himmel, Stefan Weber, Ingo Krossing (2015): Cationic Cluster Formation vs. Disproportionation of Low Valent Indium and Gallium Complexes of 2,2’ Bipyridine. In: Nature Communications. doi: 10.1038/ncomms9288

Kontakt:
Prof. Dr. Ingo Krossing
Institut für Anorganische und Analytische Chemie
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-6122
E-Mail: krossing@uni-freiburg.de

Media Contact

Rudolf-Werner Dreier Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer