Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3D-Struktur des Chromatins steuert Aktivität von Herzstammzellen

14.09.2015

Ldb1 ist für die Bildung neuer Herzmuskelzellen aus Vorläuferzellen wichtig

Auf welche Weise sich während der Embryonalentwicklung aus frühen Vorläuferzellen ein funktionierendes Herz entwickelt, ist bislang nur zum Teil bekannt. Die Aktivität vieler an der Herzentwicklung beteiligter Gene wird über einen einzigen Transkriptionsfaktor reguliert.


Mausherz während der Embryonalentwicklung (Herzmuskelzellen: rot, Stammzellen: grün).

MPI für Herz- und Lungenforschung

Wissenschaftler vom Max-Planck-Institut für Herz- und Lungenforschung in Bad Nauheim haben nun herausgefunden, dass ein Adapterprotein namens Ldb1 für die Funktion des Transkriptionsfaktors Isl1 wichtig ist.

Im Verbund steuern beide eine räumliche Annäherung von Chromatinabschnitten, in denen herzspezifische Gene liegen. Dieses ist für die Entwicklung von Herzzellen aus Stammzellen wesentlich.

Herzversagen ist einer der häufigsten Todesursachen in Deutschland. Grund hierfür dürfte sein, dass die Selbstheilungskräfte des menschlichen Herzens nur gering sind. Schäden in der Herzmuskulatur, wie sie beispielsweise nach einem Infarkt auftreten, führen zu einer dauerhaft verringerten Leistungsfähigkeit des Herzens. Im Gegensatz zu anderen Organen, beispielsweise Leber und Blut, sind im Herzen viel weniger Stammzellen vorhanden, aus denen neue Herzmuskelzellen gebildet werden könnten.

Viele klinische Ansätze haben deshalb derzeit die therapeutische Nutzung von Stammzellen zum Ziel. Aus körpereigenen oder fremden Stammzellen sollen neue Herzmuskelzellen entstehen. Klinische Studien haben zwar gezeigt, dass dieses prinzipiell möglich ist, jedoch blieb bisher ein durchschlagender Erfolg, nämlich eine für den Patienten spürbare deutliche Verbesserung der Leistungsfähigkeit des Herzens, aus. Ein Grund hierfür könnte sein, dass im Herzen zu wenig eigene Stammzellen vorhanden sind.

Die Arbeitsgruppe von Gergana Dobreva am Max-Planck-Institut für Herz- und Lungenforschung in Bad Nauheim hat nun ein Schlüsselmolekül identifiziert, das für die Regulation der Stammzellaktivität während der Embryonalentwicklung eine entscheidende Rolle spielt. Demnach steuert das als Ldb1 bezeichnete Protein die Aktivität des für die Stammzellfunktion elementaren Transkriptionsfaktors Isl1.

„Ldb-1 hat die Funktion eines Adaptermoleküls. Es bindet an Isl1 und formt mit diesem einen Komplex. Dieser Komplex wiederum löst eine dreidimensionale Umorganisation des Chromatins aus“, erklärt Dobreva. Als Chromatin bezeichnet man die fadenförmige DNA-Struktur, auf der die Gene aufgereiht sind. „Viele für die Aktivität der Herzstammzellen wichtigen Gene werden so in räumliche Nähe zueinander gebracht.“

Für diese Untersuchung habe man ein als 3C-Assay bezeichnetes molekularbiologisches Verfahren verwendet. Dieses Hochdurchsatzverfahren analysiere die dreidimensionale Struktur von Chromatin.

Wie wichtig korrekte Ausrichtung des Chromatins für die Entwicklung der Herzstammzellen zu Herzmuskelzellen ist, stellten die Bad Nauheimer Wissenschaftler an verschiedenen Modellen, so unter anderem in Zellkulturen von embryonalen Stammzellen, an Zebrafischen und an Mäusen, denen das Ldb1-Gen fehlte, fest. Ohne Ldb1 blieb die zuvor beobachtete räumliche Annäherung des Chromatins aus. In der Folge fehlte den Herzstammzellen die Möglichkeit, sich zu fertigen Herzzellen zu differenzieren. Dadurch wurde die Herzentwicklung in den Embryonen wiederum gestört.

„Unsere Untersuchungen zeigen, dass ohne das Ldb1-Gen zwar die Differenzierung der Herzstammzellen gestört war, ihre Zellzahl sich aber nicht veränderte“, so Dobreva. Dies sein ein wichtiger Hinweis auf den zugrunde liegenden Mechanismus, nämlich dass Ldb1 für die Differenzierungsfähigkeit der Stammzellen wichtig sei.

Im nächsten Schritt unternahmen die Max-Planck-Forscher ein sogenanntes Rescue-Experiment: Stammzellen ohne Ldb1-Gen wurde dies von außen zugesetzt. Wie erwartet, war daraufhin ein fehlerfreies Clustern des Chromatins zu beobachten und auch die kardiovaskuläre Differenzierung verlief normal. „Wir beobachteten allerdings, dass die Überexpression von Ldb1 außerdem dazu führt, dass die Anzahl der kardiovaskulären Stammzellen sich deutlich erhöhte“, sagte Dobreva.

„Ein Zuwenig an Ldb1 verringert zwar nicht die Zahl der Stammzellen, ein Zuviel erhöht sie aber im Gegensatz dazu.“

Für die Wissenschaftler ist dies im Hinblick auf einen therapeutischen Ansatz eine entscheidende Beobachtung. „Wir haben in unserer Studie ein Schlüsselmolekül entdeckt, mit dessen Hilfe wir nun ein Verfahren entwickeln wollen, bei dem Herzvorläuferzellen vermehrt und dann für Stammzell-basierte Therapien verwendet werden können“, so Dobreva. Deshalb soll nun in weiteren Experimenten untersucht werden, ob eine Vermehrung der Herzstammzellen mit Hilfe von Ldb1 die Selbstheilungskräfte des Herzens verbessern kann.

Originalpublikation:
L. Caputo, H.R. Witzel, P. Kolovos , S. Cheedipudi , M. Looso , A. Mylona , W.F. van IJcken, K.L. Laugwitz, S.M. Evans, T. Braun, E. Soler , F. Grosveld, G. Dobreva
The Isl1/Ldb1 Complex Orchestrates Genome-wide Chromatin Organization to Instruct Differentiation of Multipotent Cardiac Progenitors. Cell Stem Cell. doi: 10.1016/j.stem.2015.08.007

Kontakt:
Dr. Matthias Heil
Presse- & Öffentlichkeitsarbeit
Max-Planck-Institut für Herz- und Lungenforschung
Ludwigstr. 43
61231 Bad Nauheim
Email: matthias.heil@mpi-bn.mpg.de
Tel.: 06032/705-1705

Dr Harald Rösch | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften