Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unsichtbarer Schutzschild: Bakterien aus ariden Regionen machen Weizen ertragssicherer

03.06.2014

Um Weizen, eine der wichtigsten Nutzpflanzen, toleranter gegenüber Trockenheit zu machen, nahmen Forscher die Hilfe von Bakterien in Anspruch. Sie sammelten die Mikroorganismen aus extrem trockenen (ariden) Standorten und siedelten diese an Weizenwurzeln an. Und siehe da, nicht nur die Überlebensrate bei Dürre verbesserte sich, sondern auch das Wachstum der Pflanzen und die Erträge. Die Bakterien bilden dabei einen „Schutzschild“, einen Biofilm, um die Wurzeln. Mit diesem Biofilm unterstützen die Bakterien die Wasserversorgung der Pflanze bei Trockenheit.

Die Mikroorganismen-Gemeinschaften, die sich im Boden rund um die Wurzeln von Pflanzen befinden, in der sogenannten Rhizosphäre, können diese schädigen aber auch förderlich für die Gesundheit und das Wachstum der Pflanzen sein. Ein internationales Forscherteam nutzte dieses altbekannte Wissen, um zu testen, ob Bakterien aus extrem trockenen Standorten Weizenpflanzen (Triticum aestivum) helfen können, Trockenheit besser zu überdauern. Die Idee ist einfach: Wenn diese Bakterien sich im Laufe der Evolution an die trockenen Standorte angepasst haben und dort Pflanzen als unsichtbare Helfer dienen, dann könnten sie dies auch bei Nutzpflanzen in unseren Breiten tun.


Bei hohen Temperaturen und wenig Regen, leiden unsere Nutzpflanzen unter Trockenstress. So auch Weizen, der hier als Versuchspflanze genutzt wurde. (Bildquelle: © jupiter55/iStock/Thinkstock)

Trockentolerante Bakterien als Helfer

Die Wissenschaftler sammelten dazu mehrere Boden-Bakterienstämme aus verschiedenen ariden Regionen der Welt. Diese Stämme siedelten sie auf Weizenkörnern an. Nachdem die Samen keimten und die Pflanzen zu wachsen begannen, simulierten die Forscher eine Dürre und beobachteten, wie sich die mit „fremden“ Bakterien besiedelten Pflanzen, im Vergleich zu einer Kontrollgruppe ohne Bakterien, entwickelten. Die Weizenpflanzen mit neuen Mikroben zeigten eine fünffach höhere Überlebensrate und bildeten unter diesen widrigen Umständen fast bis zu 80 Prozent mehr Biomasse.

Die untersuchten Bakterienstämme stammten nicht nur aus unterschiedlichen Regionen, sondern auch aus der Rhizosphäre unterschiedlicher Pflanzenarten: Von Wildgerste (Hordeum spontaneum) aus Israel, von der Gelb-Kiefer (Pinus ponderosa) aus Arizona in den USA und von Reis (Oryza sativa) aus Ägypten. Ihnen gemeinsam ist, dass sie alle unter extrem trockenen Bedingungen wachsen. Über Millionen von Jahre koevolvierten die Bakterien mit den Pflanzen und halfen diesen, gegen die Umwelteinflüsse besser gewappnet zu sein. Für die im Experiment verwendete Weizenlinie waren die Bakterienstämme Bacillus thuringiensis AZP2 aus Arizona und Paenibacillus polymyxa B aus Ägypten am wirksamsten, da hier die Überlebensraten am höchsten waren.

Bakterieller Biofilm hält das Wasser

Die Forscher entdeckten, dass die Bakterien eine Schutzschicht, einen Biofilm, um die Wurzelhaare bildeten. Durch die Bakterien bildeten die Weizenpflanzen im Experiment nicht nur mehr, sondern auch dickere und längere Seitenwurzeln und zwei bis dreifach längere Wurzelhaare. Dadurch konnten sie Wasser aus tieferen Bodenschichten aufnehmen. Durch den Biofilm konnten die Pflanzen zudem effizienter mit dem verfügbaren Wasser haushalten. Dieser schützt die Pflanzen zusätzlich bei Dürre.

Neue Methode zur Stress-Analyse

Verglichen mit den Kontrollpflanzen ohne Bakterien, hatten die Pflänzchen mit Bakterien eine höhere Photosyntheseleistung. Dies ist neben der sichtbar höheren Überlebensrate und dem besseren Wachstum ein klares Zeichen, dass die Bakterien den Pflanzen bei Trockenstress helfen, denn normalerweise vermindert sich die Photosyntheseleistung bei Trockenheit. Gleichzeitig verströmten diese weniger flüchtige organische Verbindungen (engl. volatile organic compounds, VOC). Diese Stoffe werden von Pflanzen unter Stress vermehrt ausgesendet. Einige dieser VOCs werden ausschließlich unter Stress gebildet. Die Forscher stellten fest, dass die geringere Aussendung von VOCs mit einer höheren Photosyntheseleistung und einer höheren Überlebensrate signifikant miteinander in Beziehung steht.

Im Experiment nutzten die Forscher diese leicht flüchtigen Verbindungen, um die positive Wirkung der Bakterien auf die Pflanzen zusätzlich zu bestätigen. Senden die Pflanze weniger leicht flüchtige Verbindungen aus, war dieser Bakterienstamm für den Weizen ein nützlicher Partner im Kampf gegen die Trockenheit. So könnte künftig schnell anhand der VOCs identifiziert werden, ob ein Bakterienstamm ein geeigneter Helfer ist.

Die Wissenschaftler schlagen zudem vor, diese VOCs künftig gezielt zu nutzen, um zu erfahren, wie gestresst Pflanzen sind, bevor eine sichtbare Schädigung eintritt. Sie identifizierten drei Stoffe als vielversprechende Kandidaten für ein solches Monitoring. Denn kann man frühzeitig den Stress-Level der Pflanzen erfassen, können Gegenmaßnahmen eingeleitet werden bevor sichtbare und irreparable Schäden auftreten. Damit sich diese neuartige Methode auch für die praktische Landwirtschaft  eignet, müssen Geräte, die in der Lage sind, diese kleinen Mengen an flüchtigen Verbindungen im Feld zu analysieren, preiswerter und robuster werden. Derzeit sind diese einfach noch zu teuer für die Anwendung in der Landwirtschaft. Für die Forscher ist es aber nur noch eine Frage der Zeit, bis dies möglich wird. 

Bakterien als kostengünstige Unterstützung

In Zeiten des Klimawandels häufen sich auch Wetterextreme wie Dürreperioden. Wasser wird in einigen Regionen der Welt zu einer noch wertvolleren Ressource. Der gezielte Einsatz von Bodenbakterien könnte zur Unterstützung aufwändiger züchterischer Veränderungen von Nutzpflanzen eine kostengünstige und einfache Alternative sein, um Nutzpflanzen besser für den Klimawandel zu wappnen. Es ist jedoch noch weitere Forschung nötig, um Bakterien gezielt in der landwirtschaftlichen Praxis als Helfer gegen Trockenheit einsetzen zu können und die pflanzlichen Stresssignale frühzeitig zu erkennen.  

Timmusk, S. et al. | Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/index.php?cID=9902

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Feuerbrand bekämpfen und Salmonellen nachweisen
14.06.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Das Potenzial nichtheimischer Baumarten für den forstlichen Anbau in Deutschland sachlich prüfen
14.06.2017 | Fachagentur Nachwachsende Rohstoffe e.V.

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie