Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unsichtbarer Schutzschild: Bakterien aus ariden Regionen machen Weizen ertragssicherer

03.06.2014

Um Weizen, eine der wichtigsten Nutzpflanzen, toleranter gegenüber Trockenheit zu machen, nahmen Forscher die Hilfe von Bakterien in Anspruch. Sie sammelten die Mikroorganismen aus extrem trockenen (ariden) Standorten und siedelten diese an Weizenwurzeln an. Und siehe da, nicht nur die Überlebensrate bei Dürre verbesserte sich, sondern auch das Wachstum der Pflanzen und die Erträge. Die Bakterien bilden dabei einen „Schutzschild“, einen Biofilm, um die Wurzeln. Mit diesem Biofilm unterstützen die Bakterien die Wasserversorgung der Pflanze bei Trockenheit.

Die Mikroorganismen-Gemeinschaften, die sich im Boden rund um die Wurzeln von Pflanzen befinden, in der sogenannten Rhizosphäre, können diese schädigen aber auch förderlich für die Gesundheit und das Wachstum der Pflanzen sein. Ein internationales Forscherteam nutzte dieses altbekannte Wissen, um zu testen, ob Bakterien aus extrem trockenen Standorten Weizenpflanzen (Triticum aestivum) helfen können, Trockenheit besser zu überdauern. Die Idee ist einfach: Wenn diese Bakterien sich im Laufe der Evolution an die trockenen Standorte angepasst haben und dort Pflanzen als unsichtbare Helfer dienen, dann könnten sie dies auch bei Nutzpflanzen in unseren Breiten tun.


Bei hohen Temperaturen und wenig Regen, leiden unsere Nutzpflanzen unter Trockenstress. So auch Weizen, der hier als Versuchspflanze genutzt wurde. (Bildquelle: © jupiter55/iStock/Thinkstock)

Trockentolerante Bakterien als Helfer

Die Wissenschaftler sammelten dazu mehrere Boden-Bakterienstämme aus verschiedenen ariden Regionen der Welt. Diese Stämme siedelten sie auf Weizenkörnern an. Nachdem die Samen keimten und die Pflanzen zu wachsen begannen, simulierten die Forscher eine Dürre und beobachteten, wie sich die mit „fremden“ Bakterien besiedelten Pflanzen, im Vergleich zu einer Kontrollgruppe ohne Bakterien, entwickelten. Die Weizenpflanzen mit neuen Mikroben zeigten eine fünffach höhere Überlebensrate und bildeten unter diesen widrigen Umständen fast bis zu 80 Prozent mehr Biomasse.

Die untersuchten Bakterienstämme stammten nicht nur aus unterschiedlichen Regionen, sondern auch aus der Rhizosphäre unterschiedlicher Pflanzenarten: Von Wildgerste (Hordeum spontaneum) aus Israel, von der Gelb-Kiefer (Pinus ponderosa) aus Arizona in den USA und von Reis (Oryza sativa) aus Ägypten. Ihnen gemeinsam ist, dass sie alle unter extrem trockenen Bedingungen wachsen. Über Millionen von Jahre koevolvierten die Bakterien mit den Pflanzen und halfen diesen, gegen die Umwelteinflüsse besser gewappnet zu sein. Für die im Experiment verwendete Weizenlinie waren die Bakterienstämme Bacillus thuringiensis AZP2 aus Arizona und Paenibacillus polymyxa B aus Ägypten am wirksamsten, da hier die Überlebensraten am höchsten waren.

Bakterieller Biofilm hält das Wasser

Die Forscher entdeckten, dass die Bakterien eine Schutzschicht, einen Biofilm, um die Wurzelhaare bildeten. Durch die Bakterien bildeten die Weizenpflanzen im Experiment nicht nur mehr, sondern auch dickere und längere Seitenwurzeln und zwei bis dreifach längere Wurzelhaare. Dadurch konnten sie Wasser aus tieferen Bodenschichten aufnehmen. Durch den Biofilm konnten die Pflanzen zudem effizienter mit dem verfügbaren Wasser haushalten. Dieser schützt die Pflanzen zusätzlich bei Dürre.

Neue Methode zur Stress-Analyse

Verglichen mit den Kontrollpflanzen ohne Bakterien, hatten die Pflänzchen mit Bakterien eine höhere Photosyntheseleistung. Dies ist neben der sichtbar höheren Überlebensrate und dem besseren Wachstum ein klares Zeichen, dass die Bakterien den Pflanzen bei Trockenstress helfen, denn normalerweise vermindert sich die Photosyntheseleistung bei Trockenheit. Gleichzeitig verströmten diese weniger flüchtige organische Verbindungen (engl. volatile organic compounds, VOC). Diese Stoffe werden von Pflanzen unter Stress vermehrt ausgesendet. Einige dieser VOCs werden ausschließlich unter Stress gebildet. Die Forscher stellten fest, dass die geringere Aussendung von VOCs mit einer höheren Photosyntheseleistung und einer höheren Überlebensrate signifikant miteinander in Beziehung steht.

Im Experiment nutzten die Forscher diese leicht flüchtigen Verbindungen, um die positive Wirkung der Bakterien auf die Pflanzen zusätzlich zu bestätigen. Senden die Pflanze weniger leicht flüchtige Verbindungen aus, war dieser Bakterienstamm für den Weizen ein nützlicher Partner im Kampf gegen die Trockenheit. So könnte künftig schnell anhand der VOCs identifiziert werden, ob ein Bakterienstamm ein geeigneter Helfer ist.

Die Wissenschaftler schlagen zudem vor, diese VOCs künftig gezielt zu nutzen, um zu erfahren, wie gestresst Pflanzen sind, bevor eine sichtbare Schädigung eintritt. Sie identifizierten drei Stoffe als vielversprechende Kandidaten für ein solches Monitoring. Denn kann man frühzeitig den Stress-Level der Pflanzen erfassen, können Gegenmaßnahmen eingeleitet werden bevor sichtbare und irreparable Schäden auftreten. Damit sich diese neuartige Methode auch für die praktische Landwirtschaft  eignet, müssen Geräte, die in der Lage sind, diese kleinen Mengen an flüchtigen Verbindungen im Feld zu analysieren, preiswerter und robuster werden. Derzeit sind diese einfach noch zu teuer für die Anwendung in der Landwirtschaft. Für die Forscher ist es aber nur noch eine Frage der Zeit, bis dies möglich wird. 

Bakterien als kostengünstige Unterstützung

In Zeiten des Klimawandels häufen sich auch Wetterextreme wie Dürreperioden. Wasser wird in einigen Regionen der Welt zu einer noch wertvolleren Ressource. Der gezielte Einsatz von Bodenbakterien könnte zur Unterstützung aufwändiger züchterischer Veränderungen von Nutzpflanzen eine kostengünstige und einfache Alternative sein, um Nutzpflanzen besser für den Klimawandel zu wappnen. Es ist jedoch noch weitere Forschung nötig, um Bakterien gezielt in der landwirtschaftlichen Praxis als Helfer gegen Trockenheit einsetzen zu können und die pflanzlichen Stresssignale frühzeitig zu erkennen.  

Timmusk, S. et al. | Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/index.php?cID=9902

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Klimawandel – die Tanne sticht Fichte und Buche aus
10.08.2017 | Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL

nachricht Feuerbrand bekämpfen und Salmonellen nachweisen
14.06.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie