Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ungenutzte Energie ernten mit flächiger Thermoelektrik

26.03.2013
Ein großer Anteil der von uns produzierten Energie verpufft ungenutzt über Abwärme in der Umgebung.

Winzige thermoelektrische Generatoren können dieses Potential heben. Der Strom wird dabei über Temperaturunterschiede gewonnen. Doch bisher ist deren Produktion umständlich und teuer. Gleichzeitig fehlen geeignete Materialien. Auf der Hannover Messe zeigen Forscher jetzt ein neues Herstellungsverfahren, mit dem diese Generatoren als großflächige, flexible Bauteile günstig aus nichttoxischen Kunststoffen hergestellt werden können (Halle 3, Stand D25).


3D-Druck macht's möglich: Ein erster Demonstrator eines gedruckten thermoelektrischen Generators windet sich geschmeidig um ein Musterbauteil.
© Fraunhofer IWS

Jeder kennt sie: Die gigantischen weißen Wasserdampfwolken von Kraftwerkskühltürmen. So beeindruckend das Schauspiel sein mag, steht es doch für Energieverschwendung. Denn Großkraftwerke schaffen es nur selten, mehr als 40 Prozent der erzeugten Energie in elektrischen Strom umzuwandeln. Der Rest wird ungenutzt – vor allem über die Kühltürme – an die Umgebung abgegeben. Forscher arbeiten jetzt an Wegen, um das in den teilweise über 150 Meter hohen Betonkolossen schlummernde Potential zu nutzen. Die Zauberformel heißt dabei Thermoelektrik. Das Teilgebiet der Physik beschäftigt sich mit der Stromgewinnung aus Temperaturunterschieden. Und diese kann gerade in Kühltürmen zwischen heißen Wasserdämpfen und kühler Betonhaut groß sein.

Die Vision der Wissenschaftler beschreibt Dr. Aljoscha Roch vom Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS in Dresden: »Thermoelektrische Generatoren (TEG) haben momentan einen Wirkungsgrad von etwa acht Prozent. Das hört sich wenig an. Doch wenn wir es schaffen, die TEG kostengünstig, großflächig und aus flexiblen Materialien herzustellen, könnten wir die Innenseiten der konkav geformten Kühlturmwände in großem Stil damit ausstatten. Aufgrund der enormen Energiemenge, die in den riesigen Anlagen entstehen – pro Sekunde verdampfen etwa 1500 Liter Wasser – könnten wir so große Mengen an Strom erzeugen.«

Zusammen mit seinen Kollegen vom IWS ist Roch diesem Ziel nun einen großen Schritt näher gekommen: Den Wissenschaftlern ist es gelungen, TEG per Druckverfahren zu produzieren. Die miniaturisierten Generatoren lassen sich dabei nicht nur günstig, auf großen Flächen und flexibel handhabbar herstellen. Ein weiterer großer Vorteil: Die verwendeten Materialien sind umweltverträglich. »TEG werden heute größtenteils per Hand und aus toxischen Bausteinen, die beispielsweise Blei enthalten, gefertigt. Wir nutzen nun moderne 3D-Drucktechnologie und unbedenkliche Polymere (Kunststoffe), die elektrisch leitend sind«, erklärt Roch.

Die neue Drucktechnologie funktioniert ähnlich wie ein Tintenstrahldrucker. Der Unterschied: Statt eines dünnen Tintenstrahls kommt eine thermoelektrisch aktive Polymer-Paste aus der Kartusche und lässt die etwa 20 bis 30 Mikrometer dicken thermoelektrischen Schichten entstehen. »Die Generatoren benötigen eine gewisse Dicke, um aus Temperaturunterschieden elektrische Spannung aufzubauen. Um die nötige Tiefe zu erzielen, könnten sich aktuell verfügbare 3D-Druckverfahren sehr gut eignen«, erläutert Roch. Die gedruckten TEG zeigen die IWS-Forscher erstmals während der Hannover Messe in einem Kühlturmmodell.

Minimale Temperaturunterschiede reichen aus

Doch wie »erntet« man nun den Strom aus diesen wenige Mikrometer großen Polymer-Generatoren? Der heiße Wasserdampf aktiviert die Elektronen im Generator, die negativ aufgeladenen Teilchen wandern zur kühleren Seite und es entsteht eine elektrische Spannung. Für diesen Effekt reichen schon kleine Temperaturunterschiede wie ein Grad aus. Bereits seit 200 Jahren kennt die Physik diesen Effekt. Eine flächendeckende Verbreitung blieb bisher jedoch aufgrund fehlender effizienter Herstellungsverfahren und geeigneter Materialien aus. In der Raumfahrt und testweise der Automobilindustrie kommen die in Handarbeit hergestellten klötzchenartigen TEG zum Einsatz. Am Abgasstrang montiert liefern sie hier beispielsweise Strom für die Bordelektronik des Fahrzeugs. 600 Watt, also die Stromleistung von etwa 6 Glühbirnen, konnten hier bereits nachgewiesen werden. Potenziert auf die vielen Millionen Fahrzeuge, die alleine auf Deutschlands Straßen unterwegs sind, ließen sich durch TEG mehrere Milliarden Kilowattstunden einsparen.

Autos und Kühltürme sind jedoch nur zwei Beispiele von vielen. »Abwärme entsteht im Prinzip beim Betrieb jeder technischen Anlage: Mit TEG, montiert an industriellen Produktionsstraßen, in der Kanalisation, an großen Rechenzentren oder an jeglicher Art von Abluftsystemen, ließen sich sehr große, bislang noch ungenutzte Energiequellen erschließen«, schließt Roch.

Dr.-Ing. Aljoscha Roch | Fraunhofer-Institut
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/Maerz/ungenutzte-energie-ernten-mit-flaechiger-thermoelektrik.html

Weitere Nachrichten aus der Kategorie HANNOVER MESSE:

nachricht Industrial Data Space macht neue Geschäftsmodelle möglich
27.03.2017 | Fraunhofer-Gesellschaft

nachricht Fließender Übergang zwischen Design und Simulation
27.03.2017 | Fraunhofer-Gesellschaft

Alle Nachrichten aus der Kategorie: HANNOVER MESSE >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Warum der Brennstoffzelle die Luft wegbleibt

28.03.2017 | Biowissenschaften Chemie

Chlamydien: Wie Bakterien das Ruder übernehmen

28.03.2017 | Biowissenschaften Chemie

Sterngeburt in den Winden supermassereicher Schwarzer Löcher

28.03.2017 | Physik Astronomie