Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ungenutzte Energie ernten mit flächiger Thermoelektrik

26.03.2013
Ein großer Anteil der von uns produzierten Energie verpufft ungenutzt über Abwärme in der Umgebung.

Winzige thermoelektrische Generatoren können dieses Potential heben. Der Strom wird dabei über Temperaturunterschiede gewonnen. Doch bisher ist deren Produktion umständlich und teuer. Gleichzeitig fehlen geeignete Materialien. Auf der Hannover Messe zeigen Forscher jetzt ein neues Herstellungsverfahren, mit dem diese Generatoren als großflächige, flexible Bauteile günstig aus nichttoxischen Kunststoffen hergestellt werden können (Halle 3, Stand D25).


3D-Druck macht's möglich: Ein erster Demonstrator eines gedruckten thermoelektrischen Generators windet sich geschmeidig um ein Musterbauteil.
© Fraunhofer IWS

Jeder kennt sie: Die gigantischen weißen Wasserdampfwolken von Kraftwerkskühltürmen. So beeindruckend das Schauspiel sein mag, steht es doch für Energieverschwendung. Denn Großkraftwerke schaffen es nur selten, mehr als 40 Prozent der erzeugten Energie in elektrischen Strom umzuwandeln. Der Rest wird ungenutzt – vor allem über die Kühltürme – an die Umgebung abgegeben. Forscher arbeiten jetzt an Wegen, um das in den teilweise über 150 Meter hohen Betonkolossen schlummernde Potential zu nutzen. Die Zauberformel heißt dabei Thermoelektrik. Das Teilgebiet der Physik beschäftigt sich mit der Stromgewinnung aus Temperaturunterschieden. Und diese kann gerade in Kühltürmen zwischen heißen Wasserdämpfen und kühler Betonhaut groß sein.

Die Vision der Wissenschaftler beschreibt Dr. Aljoscha Roch vom Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS in Dresden: »Thermoelektrische Generatoren (TEG) haben momentan einen Wirkungsgrad von etwa acht Prozent. Das hört sich wenig an. Doch wenn wir es schaffen, die TEG kostengünstig, großflächig und aus flexiblen Materialien herzustellen, könnten wir die Innenseiten der konkav geformten Kühlturmwände in großem Stil damit ausstatten. Aufgrund der enormen Energiemenge, die in den riesigen Anlagen entstehen – pro Sekunde verdampfen etwa 1500 Liter Wasser – könnten wir so große Mengen an Strom erzeugen.«

Zusammen mit seinen Kollegen vom IWS ist Roch diesem Ziel nun einen großen Schritt näher gekommen: Den Wissenschaftlern ist es gelungen, TEG per Druckverfahren zu produzieren. Die miniaturisierten Generatoren lassen sich dabei nicht nur günstig, auf großen Flächen und flexibel handhabbar herstellen. Ein weiterer großer Vorteil: Die verwendeten Materialien sind umweltverträglich. »TEG werden heute größtenteils per Hand und aus toxischen Bausteinen, die beispielsweise Blei enthalten, gefertigt. Wir nutzen nun moderne 3D-Drucktechnologie und unbedenkliche Polymere (Kunststoffe), die elektrisch leitend sind«, erklärt Roch.

Die neue Drucktechnologie funktioniert ähnlich wie ein Tintenstrahldrucker. Der Unterschied: Statt eines dünnen Tintenstrahls kommt eine thermoelektrisch aktive Polymer-Paste aus der Kartusche und lässt die etwa 20 bis 30 Mikrometer dicken thermoelektrischen Schichten entstehen. »Die Generatoren benötigen eine gewisse Dicke, um aus Temperaturunterschieden elektrische Spannung aufzubauen. Um die nötige Tiefe zu erzielen, könnten sich aktuell verfügbare 3D-Druckverfahren sehr gut eignen«, erläutert Roch. Die gedruckten TEG zeigen die IWS-Forscher erstmals während der Hannover Messe in einem Kühlturmmodell.

Minimale Temperaturunterschiede reichen aus

Doch wie »erntet« man nun den Strom aus diesen wenige Mikrometer großen Polymer-Generatoren? Der heiße Wasserdampf aktiviert die Elektronen im Generator, die negativ aufgeladenen Teilchen wandern zur kühleren Seite und es entsteht eine elektrische Spannung. Für diesen Effekt reichen schon kleine Temperaturunterschiede wie ein Grad aus. Bereits seit 200 Jahren kennt die Physik diesen Effekt. Eine flächendeckende Verbreitung blieb bisher jedoch aufgrund fehlender effizienter Herstellungsverfahren und geeigneter Materialien aus. In der Raumfahrt und testweise der Automobilindustrie kommen die in Handarbeit hergestellten klötzchenartigen TEG zum Einsatz. Am Abgasstrang montiert liefern sie hier beispielsweise Strom für die Bordelektronik des Fahrzeugs. 600 Watt, also die Stromleistung von etwa 6 Glühbirnen, konnten hier bereits nachgewiesen werden. Potenziert auf die vielen Millionen Fahrzeuge, die alleine auf Deutschlands Straßen unterwegs sind, ließen sich durch TEG mehrere Milliarden Kilowattstunden einsparen.

Autos und Kühltürme sind jedoch nur zwei Beispiele von vielen. »Abwärme entsteht im Prinzip beim Betrieb jeder technischen Anlage: Mit TEG, montiert an industriellen Produktionsstraßen, in der Kanalisation, an großen Rechenzentren oder an jeglicher Art von Abluftsystemen, ließen sich sehr große, bislang noch ungenutzte Energiequellen erschließen«, schließt Roch.

Dr.-Ing. Aljoscha Roch | Fraunhofer-Institut
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/Maerz/ungenutzte-energie-ernten-mit-flaechiger-thermoelektrik.html

Weitere Nachrichten aus der Kategorie HANNOVER MESSE:

nachricht Rittal digitalisiert Fertigung - Produktion weltweit nach Industrie 4.0
25.04.2018 | Rittal GmbH & Co. KG

nachricht Silizium als neues Speichermaterial für die Akkus der Zukunft
25.04.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: HANNOVER MESSE >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht

25.04.2018 | Biowissenschaften Chemie

Erkheimer Ökohaus-Pionier eröffnet neues Musterhaus „Heimat 4.0“

25.04.2018 | Architektur Bauwesen

Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

25.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics