Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ungenutzte Energie ernten mit flächiger Thermoelektrik

26.03.2013
Ein großer Anteil der von uns produzierten Energie verpufft ungenutzt über Abwärme in der Umgebung.

Winzige thermoelektrische Generatoren können dieses Potential heben. Der Strom wird dabei über Temperaturunterschiede gewonnen. Doch bisher ist deren Produktion umständlich und teuer. Gleichzeitig fehlen geeignete Materialien. Auf der Hannover Messe zeigen Forscher jetzt ein neues Herstellungsverfahren, mit dem diese Generatoren als großflächige, flexible Bauteile günstig aus nichttoxischen Kunststoffen hergestellt werden können (Halle 3, Stand D25).


3D-Druck macht's möglich: Ein erster Demonstrator eines gedruckten thermoelektrischen Generators windet sich geschmeidig um ein Musterbauteil.
© Fraunhofer IWS

Jeder kennt sie: Die gigantischen weißen Wasserdampfwolken von Kraftwerkskühltürmen. So beeindruckend das Schauspiel sein mag, steht es doch für Energieverschwendung. Denn Großkraftwerke schaffen es nur selten, mehr als 40 Prozent der erzeugten Energie in elektrischen Strom umzuwandeln. Der Rest wird ungenutzt – vor allem über die Kühltürme – an die Umgebung abgegeben. Forscher arbeiten jetzt an Wegen, um das in den teilweise über 150 Meter hohen Betonkolossen schlummernde Potential zu nutzen. Die Zauberformel heißt dabei Thermoelektrik. Das Teilgebiet der Physik beschäftigt sich mit der Stromgewinnung aus Temperaturunterschieden. Und diese kann gerade in Kühltürmen zwischen heißen Wasserdämpfen und kühler Betonhaut groß sein.

Die Vision der Wissenschaftler beschreibt Dr. Aljoscha Roch vom Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS in Dresden: »Thermoelektrische Generatoren (TEG) haben momentan einen Wirkungsgrad von etwa acht Prozent. Das hört sich wenig an. Doch wenn wir es schaffen, die TEG kostengünstig, großflächig und aus flexiblen Materialien herzustellen, könnten wir die Innenseiten der konkav geformten Kühlturmwände in großem Stil damit ausstatten. Aufgrund der enormen Energiemenge, die in den riesigen Anlagen entstehen – pro Sekunde verdampfen etwa 1500 Liter Wasser – könnten wir so große Mengen an Strom erzeugen.«

Zusammen mit seinen Kollegen vom IWS ist Roch diesem Ziel nun einen großen Schritt näher gekommen: Den Wissenschaftlern ist es gelungen, TEG per Druckverfahren zu produzieren. Die miniaturisierten Generatoren lassen sich dabei nicht nur günstig, auf großen Flächen und flexibel handhabbar herstellen. Ein weiterer großer Vorteil: Die verwendeten Materialien sind umweltverträglich. »TEG werden heute größtenteils per Hand und aus toxischen Bausteinen, die beispielsweise Blei enthalten, gefertigt. Wir nutzen nun moderne 3D-Drucktechnologie und unbedenkliche Polymere (Kunststoffe), die elektrisch leitend sind«, erklärt Roch.

Die neue Drucktechnologie funktioniert ähnlich wie ein Tintenstrahldrucker. Der Unterschied: Statt eines dünnen Tintenstrahls kommt eine thermoelektrisch aktive Polymer-Paste aus der Kartusche und lässt die etwa 20 bis 30 Mikrometer dicken thermoelektrischen Schichten entstehen. »Die Generatoren benötigen eine gewisse Dicke, um aus Temperaturunterschieden elektrische Spannung aufzubauen. Um die nötige Tiefe zu erzielen, könnten sich aktuell verfügbare 3D-Druckverfahren sehr gut eignen«, erläutert Roch. Die gedruckten TEG zeigen die IWS-Forscher erstmals während der Hannover Messe in einem Kühlturmmodell.

Minimale Temperaturunterschiede reichen aus

Doch wie »erntet« man nun den Strom aus diesen wenige Mikrometer großen Polymer-Generatoren? Der heiße Wasserdampf aktiviert die Elektronen im Generator, die negativ aufgeladenen Teilchen wandern zur kühleren Seite und es entsteht eine elektrische Spannung. Für diesen Effekt reichen schon kleine Temperaturunterschiede wie ein Grad aus. Bereits seit 200 Jahren kennt die Physik diesen Effekt. Eine flächendeckende Verbreitung blieb bisher jedoch aufgrund fehlender effizienter Herstellungsverfahren und geeigneter Materialien aus. In der Raumfahrt und testweise der Automobilindustrie kommen die in Handarbeit hergestellten klötzchenartigen TEG zum Einsatz. Am Abgasstrang montiert liefern sie hier beispielsweise Strom für die Bordelektronik des Fahrzeugs. 600 Watt, also die Stromleistung von etwa 6 Glühbirnen, konnten hier bereits nachgewiesen werden. Potenziert auf die vielen Millionen Fahrzeuge, die alleine auf Deutschlands Straßen unterwegs sind, ließen sich durch TEG mehrere Milliarden Kilowattstunden einsparen.

Autos und Kühltürme sind jedoch nur zwei Beispiele von vielen. »Abwärme entsteht im Prinzip beim Betrieb jeder technischen Anlage: Mit TEG, montiert an industriellen Produktionsstraßen, in der Kanalisation, an großen Rechenzentren oder an jeglicher Art von Abluftsystemen, ließen sich sehr große, bislang noch ungenutzte Energiequellen erschließen«, schließt Roch.

Dr.-Ing. Aljoscha Roch | Fraunhofer-Institut
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/Maerz/ungenutzte-energie-ernten-mit-flaechiger-thermoelektrik.html

Weitere Nachrichten aus der Kategorie HANNOVER MESSE:

nachricht Rittal mit neuer Push-in-Leiteranschlussklemme - Kontakte im Handumdrehen
26.04.2017 | Rittal GmbH & Co. KG

nachricht Neuer Blue e+ Chiller von Rittal - Exakt regeln und effizient kühlen
25.04.2017 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: HANNOVER MESSE >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten