Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reibungsfrei und intelligent: Schwebende Metallplatte zeigt, was Magnetlager können

26.03.2013
Wo sich etwas bewegen oder drehen soll, verringern so genannte Lager die Reibung – wie beim Auto zwischen Rad und Achse.

Ein neuartiges Magnetlager, das nicht nur ganz ohne Reibung auskommt, sondern intelligent und selbstständig Störungen abschätzt und ausgleicht, haben Saarbrücker Forscher um Professor Joachim Rudolph entwickelt.

Mit einer schwebenden Metallplatte, die einen Tischtennisball jongliert, zeigen sie ihr Know-how vom 8. bis 12. April auf der Hannover Messe. Die Ingenieure suchen am saarländischen Forschungsstand Kontakt zu Partnern aus Unternehmen und Industrie, für die sie maßgeschneiderte Magnetlager-Lösungen entwickeln können. (Halle 2, Stand C 40).

Kugellager ohne Kugeln? Das ist möglich: Magnetlager heißt die Alternative, die komplett ohne Reibung und Wartung auskommt. Damit ist diese Methode klar im Vorteil, denn herkömmliche Lager verringern die Reibung nur und müssen zeitaufwändig Instand gehalten werden.

An intelligenten Magnetlagern, die Lagerungen aller Art ersetzen können, arbeiten an der Saar-Uni Ingenieure im Team von Professor Joachim Rudolph. Die Technologie findet sogar in Präzisionswerkzeugen Anwendung: Hier macht die freie Lagerung zum Beispiel passgenaues Bohren von Speziallöchern möglich - etwa in einer vorher festgelegten Ellipsenform.

Kein rundes, aber umso intelligenteres Beispiel für ein Magnetlager zeigen die Regelungstechniker auf der Hannover Messe: eine schwebende Metallplatte, der sie Ballgefühl verliehen haben. Sie lässt einen Tischtennisball hüpfen. Einen solchen lässig auf einem Schläger auftippen zu lassen, erfordert auch beim Menschen einiges an Geschick. Der geübte Spieler lässt den Ball immer halbwegs gleich hoch fliegen, er hat das richtige Timing und gleicht Fehlhopser aus. Bei ihm gelingt das Zusammenspiel von Auftippen und der leichten Aufwärtsbewegung des Schlägers, die dem Ball wieder Schwung verleiht. Dieses Ballgefühl zu entwickeln, ist schon für den Menschen kein ganz leichtes Unterfangen.

Die rund fünf Kilogramm schwere Metallplatte, die Professor Rudolph und Lothar Kiltz in Hannover zeigen, wird von vier Elektromagneten frei beweglich in der Schwebe gehalten. Das macht eine reibungsfreie Bewegung möglich, ein mechanisches Lager wird ersetzt. Ihr besonderes „Talent“ zeigt die Platte, wenn sie gestört wird. Fällt etwa ein Tischtennisball auf sie, müsste sie dies normalerweise empfindlich aus dem Gleichgewicht bringen: Eigentlich müsste sie jetzt herunterfallen. Nicht so die Saarbrücker Platte. Im Gegenteil: Nicht nur, dass sie ihre Balance hält, sie kommt dem Ball sogar beim nächsten Mal im richtigen Moment entgegen und versetzt ihm einen passenden Stoß, damit er weiterhin gleichmäßig springt.

Was beim Menschen, der den Tischtennisball balanciert, vom Gehirn gesteuert wird, übernimmt bei der schwebenden Metallplatte eine Steuerungseinheit. Das besondere Know-how des neuen Verfahrens liegt in der Koordination. Es genügt dem System, die Position der Platte und die Ströme in den Magnetspulen zu messen, um den Aufprall des Balls zu erkennen. Weitere Sensoren sind nicht erforderlich, was zusätzliche Fehlerquellen ausschließt. Neue hochleistungsfähige Algorithmen berechnen innerhalb weniger Mikrosekunden, wie die Elektromagneten die Stöße abfangen können. Gleichzeitig leitet das System anhand der wenigen gemessenen Signale ab, was als nächstes passiert – es schätzt, wann der nächste Aufprall erfolgt und berechnet, wie diesem zu begegnen ist. Schon bevor der Ball wieder auftippt, weist es die Elektromagnete vorausschauend und genau an, wie sie zu reagieren haben: Die Platte ist bereit, ihm im rechten Augenblick einen angemessenen Stoß zu versetzen.

Was auf den ersten Blick spielerisch wirkt, demonstriert handfeste Ingenieurleistung: Die Saarbrücker Regelungstechniker um Joachim Rudolph entwickeln modellbasierte Algorithmen für ultraschnelle Präzisionsregelung. Dabei können sie auch „schlechte“ Signale so verarbeiten, dass sie für ein Regelungssystem verwendet werden können. Ihre Regelung erkennt Störungen und Fehler im System schnell und berücksichtigt sie, indem sie Fehlerdaten herausrechnet.

Kontakt: Prof. Dr.-Ing. Joachim Rudolph: Tel.: 0681 302-64721;
E-Mail: j.rudolph@lsr.uni-saarland.de
Lothar Kiltz: Tel.: 0 681-302-64732; E-Mail: l.kiltz@lsr.uni-saarland.de

Ein Pressefoto und ein Video für den kostenlosen Gebrauch finden Sie unter http://www.uni-saarland.de/pressefotos. Bitte beachten Sie die Nutzungsbedingungen.

Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681/302-3610).

Der saarländische Forschungsstand (Halle 2, Stand C 40) wird organisiert von der Kontaktstelle für Wissens- und Technologietransfer der Universität des Saarlandes (KWT). Sie ist zentraler Ansprechpartner für Unternehmen und initiiert unter anderem Kooperationen mit Saarbrücker Forschern. Seit kurzem ist die Universität des Saarlandes auch „Gründerhochschule“ und wird dabei vom Bundeswirtschaftsministerium gefördert. http://www.uni-saarland.de/kwt

Claudia Ehrlich | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de/kwt

Weitere Nachrichten aus der Kategorie HANNOVER MESSE:

nachricht Hannover Messe 2018: Wasserschwert statt Laserschwert
01.02.2018 | Technische Universität Chemnitz

nachricht Rittal mit neuer Push-in-Leiteranschlussklemme - Kontakte im Handumdrehen
26.04.2017 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: HANNOVER MESSE >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Brücke, die sich dehnen kann

20.02.2018 | Architektur Bauwesen

Wenn Elektronen Walzer tanzen

20.02.2018 | Biowissenschaften Chemie

Forscherteam identifiziert eine neue Klasse von Biokatalysatoren im Abbau mariner Kohlenhydrate

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics