Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reibungsfrei und intelligent: Schwebende Metallplatte zeigt, was Magnetlager können

26.03.2013
Wo sich etwas bewegen oder drehen soll, verringern so genannte Lager die Reibung – wie beim Auto zwischen Rad und Achse.

Ein neuartiges Magnetlager, das nicht nur ganz ohne Reibung auskommt, sondern intelligent und selbstständig Störungen abschätzt und ausgleicht, haben Saarbrücker Forscher um Professor Joachim Rudolph entwickelt.

Mit einer schwebenden Metallplatte, die einen Tischtennisball jongliert, zeigen sie ihr Know-how vom 8. bis 12. April auf der Hannover Messe. Die Ingenieure suchen am saarländischen Forschungsstand Kontakt zu Partnern aus Unternehmen und Industrie, für die sie maßgeschneiderte Magnetlager-Lösungen entwickeln können. (Halle 2, Stand C 40).

Kugellager ohne Kugeln? Das ist möglich: Magnetlager heißt die Alternative, die komplett ohne Reibung und Wartung auskommt. Damit ist diese Methode klar im Vorteil, denn herkömmliche Lager verringern die Reibung nur und müssen zeitaufwändig Instand gehalten werden.

An intelligenten Magnetlagern, die Lagerungen aller Art ersetzen können, arbeiten an der Saar-Uni Ingenieure im Team von Professor Joachim Rudolph. Die Technologie findet sogar in Präzisionswerkzeugen Anwendung: Hier macht die freie Lagerung zum Beispiel passgenaues Bohren von Speziallöchern möglich - etwa in einer vorher festgelegten Ellipsenform.

Kein rundes, aber umso intelligenteres Beispiel für ein Magnetlager zeigen die Regelungstechniker auf der Hannover Messe: eine schwebende Metallplatte, der sie Ballgefühl verliehen haben. Sie lässt einen Tischtennisball hüpfen. Einen solchen lässig auf einem Schläger auftippen zu lassen, erfordert auch beim Menschen einiges an Geschick. Der geübte Spieler lässt den Ball immer halbwegs gleich hoch fliegen, er hat das richtige Timing und gleicht Fehlhopser aus. Bei ihm gelingt das Zusammenspiel von Auftippen und der leichten Aufwärtsbewegung des Schlägers, die dem Ball wieder Schwung verleiht. Dieses Ballgefühl zu entwickeln, ist schon für den Menschen kein ganz leichtes Unterfangen.

Die rund fünf Kilogramm schwere Metallplatte, die Professor Rudolph und Lothar Kiltz in Hannover zeigen, wird von vier Elektromagneten frei beweglich in der Schwebe gehalten. Das macht eine reibungsfreie Bewegung möglich, ein mechanisches Lager wird ersetzt. Ihr besonderes „Talent“ zeigt die Platte, wenn sie gestört wird. Fällt etwa ein Tischtennisball auf sie, müsste sie dies normalerweise empfindlich aus dem Gleichgewicht bringen: Eigentlich müsste sie jetzt herunterfallen. Nicht so die Saarbrücker Platte. Im Gegenteil: Nicht nur, dass sie ihre Balance hält, sie kommt dem Ball sogar beim nächsten Mal im richtigen Moment entgegen und versetzt ihm einen passenden Stoß, damit er weiterhin gleichmäßig springt.

Was beim Menschen, der den Tischtennisball balanciert, vom Gehirn gesteuert wird, übernimmt bei der schwebenden Metallplatte eine Steuerungseinheit. Das besondere Know-how des neuen Verfahrens liegt in der Koordination. Es genügt dem System, die Position der Platte und die Ströme in den Magnetspulen zu messen, um den Aufprall des Balls zu erkennen. Weitere Sensoren sind nicht erforderlich, was zusätzliche Fehlerquellen ausschließt. Neue hochleistungsfähige Algorithmen berechnen innerhalb weniger Mikrosekunden, wie die Elektromagneten die Stöße abfangen können. Gleichzeitig leitet das System anhand der wenigen gemessenen Signale ab, was als nächstes passiert – es schätzt, wann der nächste Aufprall erfolgt und berechnet, wie diesem zu begegnen ist. Schon bevor der Ball wieder auftippt, weist es die Elektromagnete vorausschauend und genau an, wie sie zu reagieren haben: Die Platte ist bereit, ihm im rechten Augenblick einen angemessenen Stoß zu versetzen.

Was auf den ersten Blick spielerisch wirkt, demonstriert handfeste Ingenieurleistung: Die Saarbrücker Regelungstechniker um Joachim Rudolph entwickeln modellbasierte Algorithmen für ultraschnelle Präzisionsregelung. Dabei können sie auch „schlechte“ Signale so verarbeiten, dass sie für ein Regelungssystem verwendet werden können. Ihre Regelung erkennt Störungen und Fehler im System schnell und berücksichtigt sie, indem sie Fehlerdaten herausrechnet.

Kontakt: Prof. Dr.-Ing. Joachim Rudolph: Tel.: 0681 302-64721;
E-Mail: j.rudolph@lsr.uni-saarland.de
Lothar Kiltz: Tel.: 0 681-302-64732; E-Mail: l.kiltz@lsr.uni-saarland.de

Ein Pressefoto und ein Video für den kostenlosen Gebrauch finden Sie unter http://www.uni-saarland.de/pressefotos. Bitte beachten Sie die Nutzungsbedingungen.

Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681/302-3610).

Der saarländische Forschungsstand (Halle 2, Stand C 40) wird organisiert von der Kontaktstelle für Wissens- und Technologietransfer der Universität des Saarlandes (KWT). Sie ist zentraler Ansprechpartner für Unternehmen und initiiert unter anderem Kooperationen mit Saarbrücker Forschern. Seit kurzem ist die Universität des Saarlandes auch „Gründerhochschule“ und wird dabei vom Bundeswirtschaftsministerium gefördert. http://www.uni-saarland.de/kwt

Claudia Ehrlich | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de/kwt

Weitere Nachrichten aus der Kategorie HANNOVER MESSE:

nachricht Prüfvorgänge servicefreundlich gestalten
20.04.2016 | PHOENIX CONTACT GmbH & Co.KG

nachricht Modulare Steckverbinder in Snap-in-Rahmen
20.04.2016 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: HANNOVER MESSE >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie