Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Hybrid-Tinten ermöglichen gedruckte, flexible Elektronik ohne Sintern

13.04.2016

Forscher am INM - Leibniz-Institut für Neue Materialien haben die Vorteile von organischen und anorganischen elektronischen Materialien in neuen Hybrid-Tinten vereinigt. Damit lassen sich Schaltkreise direkt aus dem Füller auf Papier auftragen.

Die Elektronik von morgen ist gedruckt. Biegsame Schaltkreise auf Folien oder Papier können günstig durch Druckverfahren hergestellt werden und erlauben futuristische Designs mit gekrümmten Leucht- oder Eingabeelementen.


Schaltkreise direkt aus dem Füller

Copyright: INM

Das erfordert druckbare elektronische Materialien, die während der Verarbeitung keinen Schaden nehmen und deren Leitfähigkeit trotz gebogener Oberflächen während des Einsatzes hoch bleibt. Bewährte Materialien sind zum Beispiel organische, leitende Polymere, Nanopartikel aus leitfähigen Oxiden (TCOs) oder Metallpartikel.

Forscher am INM – Leibniz-Institut für Neue Materialien haben nun die Vorteile von organischen und anorganischen elektronischen Materialien in neuen Hybrid-Tinten vereinigt. Damit lassen sich Schaltkreise zum Beispiel direkt aus dem Füller auf Papier auftragen.

Ihre Ergebnisse und Möglichkeiten zeigen die Entwickler auf der diesjährigen Hannover Messe am Stand B46 in Halle 2 im Rahmen der Leitmesse Research & Technology vom 25. bis 29. April.

Für ihre Hybrid-Tinten haben die Forscher Nanopartikel aus Metallen mit organischen, leitfähigen Polymeren umhüllt und in Mischungen aus Wasser und Alkohol suspendiert. Diese Suspensionen können direkt mit einem Füller auf Papier oder Folie aufgebracht werden und trocknen ohne weitere Bearbeitung zu elektrischen Schaltkreisen.

„Elektrisch leitende Polymere werden beispielsweise in OLEDs verwendet, die auch auf flexiblen Substraten hergestellt werden können“, erklärt Tobias Kraus, Leiter der Forschungsgruppe Strukturbildung am INM. „Durch die Kombination mit Metall-Nanopartikeln vereinen wir mechanische Flexibilität mit der Robustheit eines Metalles und erhöhen gleichzeitig die elektrische Leitfähigkeit.“

Die Entwickler kombinieren die organischen Polymere mit Gold- oder Silber-Nanopartikeln. Darin übernehmen die organischen Verbindungen drei Funktionen: „Einerseits sorgen die Verbindungen als Liganden dafür, dass die Nanopartikel im Flüssig-Gemisch suspendiert bleiben; ein Verklumpen von Partikeln würde beim Drucken stören. Gleichzeitig sorgen die organischen Liganden dafür, dass sich die Nanopartikel beim Trocknen gut anordnen.

Schließlich wirken die organischen Verbindungen wie „Scharniere“: biegt man das Material, erhalten sie die elektrische Leitfähigkeit aufrecht. In einer Lage von Metallpartikeln ohne die Polymer-Hülle wäre die elektrische Leitfähigkeit beim Biegen rasch verloren“, fährt der Materialwissenschaftler Kraus fort. Durch die Kombination beider Materialien sei die elektrische Leitfähigkeit beim Biegen deshalb insgesamt höher als bei einer Schicht rein aus leitfähigem Polymer oder einer Schicht rein aus Metall-Nanopartikeln.

„Metall-Nanopartikel mit Liganden werden auch heute schon zu Elektronik verdruckt“, erläutert der Physikochemiker Kraus. Die Hüllen müssten aber meist durch Sintern entfernt werden, weil sie zwar die Anordnung der Nanopartikel steuern, aber nicht leitfähig sind. Das sei bei temperaturempfindlichen Trägermaterialien wie Papier oder Polymerfolien schwierig, da diese während des Sinterns Schaden nähmen. „Unsere neuen Hybrid-Tinten sind sofort nach dem Eintrocknen leitfähig, mechanisch besonders flexibel und kommen ohne Sintern aus“, fasst Kraus die Ergebnisse seiner Forschung zusammen.

Originalpublikation:
B. Reiser, L. González-García, I. Kanelidis, J. H. M. Maurera, T. Kraus; Gold nanorods with conjugated polymer ligands: sintering-free conductive inks for printed electronics; Chem. Sci., 2016; DOI: 10.1039/C6SC00142D

Ihr Experte am INM:
Dr. Tobias Kraus
INM – Leibniz-Institut für Neue Materialien
Leiter Strukturbildung
Stellv. Leiter InnovationsZentrum INM
Tel: 0681-9300-389
tobias.kraus@leibniz-inm.de

Das INM erforscht und entwickelt Materialien – für heute, morgen und übermorgen. Chemiker, Physiker, Biologen, Material- und Ingenieurwissenschaftler prägen die Arbeit am INM. Vom Molekül bis zur Pilotfertigung richten die Forscher ihren Blick auf drei wesentliche Fragen: Welche Materialeigenschaften sind neu, wie untersucht man sie und wie kann man sie zukünftig für industrielle und lebensnahe Anwendungen nutzen? Dabei bestimmen vier Leitthemen die aktuellen Entwicklungen am INM: Neue Materialien für Energieanwendungen, Neue Konzepte für medizinische Oberflächen, Neue Oberflächenmaterialien für tribologische Systeme sowie Nano-Sicherheit und Nano-Bio. Die Forschung am INM gliedert sich in die drei Felder Nanokomposit-Technologie, Grenzflächenmaterialien und Biogrenzflächen.

Das INM - Leibniz-Institut für Neue Materialien mit Sitz in Saarbrücken ist ein internationales Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Das INM ist ein Institut der Leibniz-Gemeinschaft und beschäftigt rund 220 Mitarbeiter.

Weitere Informationen:

http://www.leibniz-inm.de

http://www-leibniz-gemeinschaft.de

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie HANNOVER MESSE:

nachricht Rittal mit neuer Push-in-Leiteranschlussklemme - Kontakte im Handumdrehen
26.04.2017 | Rittal GmbH & Co. KG

nachricht Neuer Blue e+ Chiller von Rittal - Exakt regeln und effizient kühlen
25.04.2017 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: HANNOVER MESSE >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

Recherche-Reise zum European XFEL und DESY nach Hamburg

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungsnachrichten

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungsnachrichten

Lupinen beim Trinken zugeschaut – erstmals 3D-Aufnahmen vom Wassertransport zu Wurzeln

24.07.2017 | Biowissenschaften Chemie