Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Hybrid-Tinten ermöglichen gedruckte, flexible Elektronik ohne Sintern

13.04.2016

Forscher am INM - Leibniz-Institut für Neue Materialien haben die Vorteile von organischen und anorganischen elektronischen Materialien in neuen Hybrid-Tinten vereinigt. Damit lassen sich Schaltkreise direkt aus dem Füller auf Papier auftragen.

Die Elektronik von morgen ist gedruckt. Biegsame Schaltkreise auf Folien oder Papier können günstig durch Druckverfahren hergestellt werden und erlauben futuristische Designs mit gekrümmten Leucht- oder Eingabeelementen.


Schaltkreise direkt aus dem Füller

Copyright: INM

Das erfordert druckbare elektronische Materialien, die während der Verarbeitung keinen Schaden nehmen und deren Leitfähigkeit trotz gebogener Oberflächen während des Einsatzes hoch bleibt. Bewährte Materialien sind zum Beispiel organische, leitende Polymere, Nanopartikel aus leitfähigen Oxiden (TCOs) oder Metallpartikel.

Forscher am INM – Leibniz-Institut für Neue Materialien haben nun die Vorteile von organischen und anorganischen elektronischen Materialien in neuen Hybrid-Tinten vereinigt. Damit lassen sich Schaltkreise zum Beispiel direkt aus dem Füller auf Papier auftragen.

Ihre Ergebnisse und Möglichkeiten zeigen die Entwickler auf der diesjährigen Hannover Messe am Stand B46 in Halle 2 im Rahmen der Leitmesse Research & Technology vom 25. bis 29. April.

Für ihre Hybrid-Tinten haben die Forscher Nanopartikel aus Metallen mit organischen, leitfähigen Polymeren umhüllt und in Mischungen aus Wasser und Alkohol suspendiert. Diese Suspensionen können direkt mit einem Füller auf Papier oder Folie aufgebracht werden und trocknen ohne weitere Bearbeitung zu elektrischen Schaltkreisen.

„Elektrisch leitende Polymere werden beispielsweise in OLEDs verwendet, die auch auf flexiblen Substraten hergestellt werden können“, erklärt Tobias Kraus, Leiter der Forschungsgruppe Strukturbildung am INM. „Durch die Kombination mit Metall-Nanopartikeln vereinen wir mechanische Flexibilität mit der Robustheit eines Metalles und erhöhen gleichzeitig die elektrische Leitfähigkeit.“

Die Entwickler kombinieren die organischen Polymere mit Gold- oder Silber-Nanopartikeln. Darin übernehmen die organischen Verbindungen drei Funktionen: „Einerseits sorgen die Verbindungen als Liganden dafür, dass die Nanopartikel im Flüssig-Gemisch suspendiert bleiben; ein Verklumpen von Partikeln würde beim Drucken stören. Gleichzeitig sorgen die organischen Liganden dafür, dass sich die Nanopartikel beim Trocknen gut anordnen.

Schließlich wirken die organischen Verbindungen wie „Scharniere“: biegt man das Material, erhalten sie die elektrische Leitfähigkeit aufrecht. In einer Lage von Metallpartikeln ohne die Polymer-Hülle wäre die elektrische Leitfähigkeit beim Biegen rasch verloren“, fährt der Materialwissenschaftler Kraus fort. Durch die Kombination beider Materialien sei die elektrische Leitfähigkeit beim Biegen deshalb insgesamt höher als bei einer Schicht rein aus leitfähigem Polymer oder einer Schicht rein aus Metall-Nanopartikeln.

„Metall-Nanopartikel mit Liganden werden auch heute schon zu Elektronik verdruckt“, erläutert der Physikochemiker Kraus. Die Hüllen müssten aber meist durch Sintern entfernt werden, weil sie zwar die Anordnung der Nanopartikel steuern, aber nicht leitfähig sind. Das sei bei temperaturempfindlichen Trägermaterialien wie Papier oder Polymerfolien schwierig, da diese während des Sinterns Schaden nähmen. „Unsere neuen Hybrid-Tinten sind sofort nach dem Eintrocknen leitfähig, mechanisch besonders flexibel und kommen ohne Sintern aus“, fasst Kraus die Ergebnisse seiner Forschung zusammen.

Originalpublikation:
B. Reiser, L. González-García, I. Kanelidis, J. H. M. Maurera, T. Kraus; Gold nanorods with conjugated polymer ligands: sintering-free conductive inks for printed electronics; Chem. Sci., 2016; DOI: 10.1039/C6SC00142D

Ihr Experte am INM:
Dr. Tobias Kraus
INM – Leibniz-Institut für Neue Materialien
Leiter Strukturbildung
Stellv. Leiter InnovationsZentrum INM
Tel: 0681-9300-389
tobias.kraus@leibniz-inm.de

Das INM erforscht und entwickelt Materialien – für heute, morgen und übermorgen. Chemiker, Physiker, Biologen, Material- und Ingenieurwissenschaftler prägen die Arbeit am INM. Vom Molekül bis zur Pilotfertigung richten die Forscher ihren Blick auf drei wesentliche Fragen: Welche Materialeigenschaften sind neu, wie untersucht man sie und wie kann man sie zukünftig für industrielle und lebensnahe Anwendungen nutzen? Dabei bestimmen vier Leitthemen die aktuellen Entwicklungen am INM: Neue Materialien für Energieanwendungen, Neue Konzepte für medizinische Oberflächen, Neue Oberflächenmaterialien für tribologische Systeme sowie Nano-Sicherheit und Nano-Bio. Die Forschung am INM gliedert sich in die drei Felder Nanokomposit-Technologie, Grenzflächenmaterialien und Biogrenzflächen.

Das INM - Leibniz-Institut für Neue Materialien mit Sitz in Saarbrücken ist ein internationales Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Das INM ist ein Institut der Leibniz-Gemeinschaft und beschäftigt rund 220 Mitarbeiter.

Weitere Informationen:

http://www.leibniz-inm.de

http://www-leibniz-gemeinschaft.de

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie HANNOVER MESSE:

nachricht Rittal mit neuer Push-in-Leiteranschlussklemme - Kontakte im Handumdrehen
26.04.2017 | Rittal GmbH & Co. KG

nachricht Neuer Blue e+ Chiller von Rittal - Exakt regeln und effizient kühlen
25.04.2017 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: HANNOVER MESSE >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie