Vulkanologie: Bläschen führen zum Deaster

Vulkan Tambora auf Sumbawa: Sein explosiver Ausbruch vor 200 Jahren kühlte vorübergehend das Klima und führte zu einem Jahr ohne Sommer. Bild: JialiangGao / Wikimedia Commons CC BY-SA 3.0)

Im Jahr 1816 blieb in Mitteleuropa der Sommer aus. Die Menschen litten Hunger. Ein Jahr zuvor war in Indonesien der Vulkan Tambora ausgebrochen. Er schleuderte grosse Mengen Asche und Schwefel in die Atmosphäre. Diese Partikel blockierten das Sonnenlicht und kühlten dadurch das Klima. Dies wirkte sich auch in der Schweiz gravierend auf Land und Leute aus.

Vulkanologen haben mittlerweile eine ziemlich genaue Vorstellung davon, weshalb Supervulkane wie der Tambora nicht nur sehr explosiv sind, sondern auch weshalb sie so viel Schwefel freisetzen: In der obersten Schicht einer Magmakammer, die nur wenige Kilometer tief unter der Erdoberfläche liegt, können sich Gasblasen anreichern. Dadurch baut sich Druck auf, der sich durch den Vulkanausbruch schlagartig abbaut. In diesen Blasen ist vor allem Wasserdampf eingeschlossen, aber auch Schwefel.

Schwefelreiche Ausbrüche

«Solche Ausbrüche von Vulkanen können gewaltig sein, und sie fördern enorm viel Asche und Schwefel an die Oberfläche und in die Atmosphäre», sagt Andrea Parmigiani, Postdoc am Institut für Geochemie und Petrologie der ETH Zürich. «Wir wissen zwar schon länger, dass Gasblasen dabei eine grosse Rolle spielen, wie sich diese jedoch in Magmakammern anreichern, darüber konnten wir bisher nur spekulieren.»

Der Forscher hat deshalb mit weiteren Wissenschaftlern der ETH Zürich und des Georgia Institute of Technology (Georgia Tech) das Verhalten der Bläschen mit einem Computermodell studiert. Die Wissenschaftler haben theoretische Berechnungen und Laborexperimente angestellt und dabei insbesondere untersucht, wie sich Blasen in kristallreichen und kristallarmen Schichten der Magmakammer nach oben bewegen. In vielen Vulkansystemen besteht die Magmakammer zur Hauptsache aus zwei Zonen: Eine obere Schicht, bestehend aus zähflüssiger kristallarmer Schmelze, und eine untere, die reich ist an Kristallen und Poren.

Superblasen schlängeln sich durch Labyrinth

Zu Beginn des Projekts gingen Parmigiani sowie Christian Huber vom Georgia Tech und Olivier Bachmann von der ETH davon aus, dass der Aufstieg der Blasen in kristallreichen Zonen des Magmareservoirs stark verlangsamt wird. In kristallarmen Bereichen jedoch sollten die Blasen schneller aufsteigen. «Stattdessen haben wir herausgefunden, dass Blasen in kristallreichen Zonen schneller aufsteigen, wenn gleichzeitig auch der Anteil an flüchtigen Stoffe hoch ist. Sie reichern sich hingegen in darüber liegenden, schmelzenreichen Abschnitten der Magmakammer an», sagt Parmigiani.

Er erklärt sich dies so: Nimmt der Anteil an Blasen in den Poren der kristallreichen Schicht zu, verschmelzen einzelne kleine Blasen zu fingerartigen Kanälen. Diese nehmen Fahrt auf und verdrängen dabei im Porenraum vorhandene hoch viskose Schmelze. Diese fingerartigen Kanäle ermöglichen es dem darin enthaltenen Gas schneller aufzusteigen. Die Blasen müssen dazu allerdings mindestens zehn bis fünfzehn Prozent des Porenraums ausfüllen. «Können sich diese Dampfkanäle nicht bilden, bleiben Einzelblasen mechanisch gefangen», sagt der Forscher.

Gelangen die fingerartigen Kanäle an die Grenze zur kristallarmen Schmelze lösen sich kugelige Einzelblasen ab. Diese steigen zwar weiter zur Oberfläche auf, ihre Wandergeschwindigkeit verringert sich jedoch, je mehr Blasen am Aufsteigen sind. Der Grund: Jede Blase schiebt eine Bugwelle zähflüssiger Schmelze vor sich her und drückt diese beiseite. Gelangt die benachbarte Blase in den Bereich dieses rückwärts gerichteten Schmelzenflusses, wird sie gebremst.

Diesen Vorgang konnten Parmigianis Kollegen Salah Faroughi und Christian Huber mit einem Labor-Experiment am Georgia Tech aufzeigen. Sie verwendeten dazu Wasserblasen, die in einer zähflüssigen Silikonlösung aufsteigen.

Blasen bauen hohen Druck auf

«Durch diesen Mechanismus können sich sehr viele Gasblasen in der kristallarmen Schmelze unter dem Dach der Magmakammer anreichern. Das führt schliesslich zu einem Überdruck in der Kammer», sagt Parmigiani. Und weil die Blasen auch Schwefel enthalten, werde dieser mitangereichert. So könne man erklären, weshalb ein solcher Vulkan mehr Schwefel ausstosse, als aufgrund der Gesteinszusammensetzung zu erwarten sei.

Was dies für die Explosivität eines bestimmten Vulkans bedeutet, ist allerdings noch unklar. «Diese Studie konzentriert sich auf die Grundlagen des Gasflusses in einer Magmakammer. Einen direkte praktische Anwendung wie die Voraussage des Verhaltens eines Vulkans bleibt Gegenstand zukünftiger Forschung», sagt der Forscher.

Computermodelle bilden nicht die ganze Magmakammer ab, sondern nur einen winzigen Ausschnitt davon; einen Quader von wenigen Kubikzentimetern, der eine scharfe Grenze zwischen kristallarmer und kristallreicher Schicht aufweist. Nur schon um dieses kleine Volumen zu berechnen, benutzte Parmigiani Hochleistungsrechner wie den Euler-Cluster an der ETH Zürich und einen Supercomputer am Nationalen Hochleistungsrechenzentrum CSCS in Lugano.

Die Software, die Parmigiani verwendete, stammt aus der Open Source-Bibliothek Palabos, die er in Zusammenarbeit mit Forschenden der Universität Genf weiterentwickelt. «Diese Software ist für diese Art von Simulationen besonders geeignet», sagt der Physiker.

Literaturhinweis

Parmigiani A, Faroughi S, Huber C, Bachmann O, Su Y. Bubble accumulation and its role in the evolution of magma reservoirs in the upper crust. Nature, Advanced Online Publication 13th April 2016. doi:10.1038/nature17401

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/04/blasen-anr…

Media Contact

Peter Rüegg Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Autonomes High-Speed-Transportfahrzeug für die Logistik von morgen

Schwarm-Logistik Das Fraunhofer-Institut für Materialfluss und Logistik IML entwickelt eine neue Generation fahrerloser Transportfahrzeuge: Der LoadRunner kann sich dank Künstlicher Intelligenz und Kommunikation über 5G im Schwarm organisieren und selbstständig…

Neue Möglichkeiten in der druckunterstützten Wärmebehandlung

Das Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM in Dresden verstärkt seine technologische Kompetenz im Bereich der druckunterstützten Wärmebehandlung mit der Neuanschaffung einer Quintus Hot Isostatic Press QIH 15L. Damit…

Virenfreie Luft durch neuartigen Raumlüfter

In geschlossenen Räumen ist die Corona-Gefahr besonders groß. Aerosole spielen eine entscheidende Rolle bei der Übertragung von Sars-CoV-2 und erhöhen die Konzentration der Corona-Viren in Büros und Co. Ein neuartiges…

Partner & Förderer